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THEORETICAL AND EXPERIMENTAL STUDIES OF REENTRY PLASMAS

By Michael G. Dunn and Sang-Wook Kang

Cornell Aeronautical Laboratory, Inc.

SUMMARY

A viscous shock-layer analysis has been developed and applied to the

calculation of nonequilibrium-flow species distributions in the plasma layer

of the RAM vehicle at high altitudes. The theoretical electron-density results

obtained are in good agreement with those measured in flight. The flight

measurements were obtained using electrostatic probes that protruded well

into the shock layer. In addition, the theoretically obtained heavy-particle

translational temperatures appear to agree fairly well with the electron tem-

peratures that were measured in the flight experiments using voltage-swept thin-

wire electrostatic probes. The influence of the reaction rate coefficients on

the calculated ele.ctron densities has been assessed and shown to be within the

uncertainty in the flight data. The theoretical results demonstrate the importance

of including in the chemical model the positive ions NZ +, Oz +, N ÷, and O _,

in addition to NO + for the high altitudes and velocities considered here.

A circular-aperture flush-mounted antenna, for which a theoretical

description of the antenna-plasma interaction has been developed, was used

to obtain a comparison between theoretical and experimental antenna admittance

in the presence of ionized boundary layers of low collision frequency. The
antenna was located in a flat-plate model which was in turn located in the

expanding-flow environment of a reflected-shock tunnel. The electron-tem-

perature and electron-density distributions in the plate boundary layer at the
antenna location were independently measured using voltage-swept thin-wire

Langmuir probes for one of the test conditions. The antenna admittance

was measured using a four-probe microwave reflectometer and these

measured values were found to be in good agreement with those predicted

from the theory. The response of this antenna was found to be very

sensitive to changes in the profile and magnitude of electron density for

0.1<ne/ne_cr_l.Z. Beyond ne/ne)cr of 1.2 the phase rotation continued

to provide a measurement of electron density. Measurements were also

performed with another type of circular-aperture antenna which did not

satisfy all of the constraints of the theoretical model, yet good agreement

was obtained between the calculations and the experimental results.

Voltage-swept thin-wire electrostatic probes hay@ been used to obtain

the electron density in the free-stream flow of a reflected-shock tunneLand in

the boundary layer over a flat plate located in this expanding-flow environment.

The voltage sweep was sufficient to permit electron-density determination from

both the ion- and electron-current port-ions of the probe characteristic while

the electron temperature was determined from the electron-retarding region.

The electron density determined from these two portions of the probe character-

istic were in good agreement with each other and with independent microwave

measurements for the free-stream experiments. Zaframboise's free-molecular

flow theory was used to deduce the number-density results presented here.

A theoretical analysis has been completed which permits the calculation

_f the nonequilibrium, viscous shock-layer flow field for a sphere-cone body



at high altitudes. Results are presented for two different bodies at several
different altitudes illustrating the influences of bluntness and chemical non-

equilibrium on several gasdynamic parameters of interest. Plane-wave trans-

mission coefficients were calculated for an approximate space-shuttle body

using a typical trajectory. These approximate results suggest that for fre-
quencies less than Z200 MHz, transmission difficulties will probably be encoun-
tered between ZOO and 300 kft on the basis of pure air ionization only. The

additional influence of ablation product ionization was not assessed.

Some of the thin-wire electrostatic probe data obtained after the probes

were retracted into the base region were analyzed and electron temperatures

and electron densities were deduced over an altitude range of approximately

190, 000 to 180,000 feet. The results appear to be reasonable on the basis of

electron densities and heavy-particle translational temperatures computed at

the vehicle shoulder just prior to base-region expansion.



I. INTRODUC TION

This document is the final report for Contract NAS 1-I0674 which
was initiated in April 1971. The work requirement of this contract consisted
of five distinct problem areas each of which is sufficiently self contained
that the results obtained can be reported separatelY.

In the remainder of this report, the comparison between the theoret-
ical and measured electron-density distributions for the RAM vehicle at
high altitudes will be presented in Section Z. In Section 3, the experimental
and theoretical studies performed using the RAM S-band atennas to determine
electron density are described. The results of an experimental program
using positively biased electrostatic probes to obtain electron density in
collisionless flows are discussed in Section 4. A theoretical analysis which
permits the calculation of the nonequilibrium, viscous shock-layer flow field
for a sphere-cone body at high altitudes is presented in Section 5. This
discussion includes calculated plane-wave transmission coefficients for an
approximate space-shuttle body for frequencies from I0, 000 to 100 mhz. In
Section 6 the results of the post-retraction electrostatic-probe results are
presented. The report concludes with Section 7 in which our suggestions for
obtaining a description of the high altitude, three-dimensional space-shuttle
flow field using the relatively simple integral method are presented. It was

not within the scope of this contract to complete this particular study. The

purpose was only to formulate the problem which was completed.

Z. THEORETICAL AND MEASURED ELECTRON-DENSITY DISTRIBUTIONS

FOR THE RAM VEHICLE AT HIGH ALTITUDES

Z. 1 Introduction

For hypersonic flight vehicles at high altitudes, the flow field sur-

rounding the body, i.e., the shock layer, is fully viscous, with the result

that the conventional separation of the inviscid layer and the thin boundary

layer is not warranted. For example, for a vehicle with a iZ-inch nose

diameter, the thin boundary-layer assumption breaks down at altitudes above

ZOO, 000 feet and a separate analysis is needed which accounts for the thick-
ened shock-transition zone and the fully viscous fluid within the shock laver

along with the effects of chemical nonequilibrium. Analyses are available

for the nose region of a blunt vehicle {Refs. i-4}. It is the purpose of this paper

I} to analyze theoretically the chemical nonequilibrium, ionized flow field

surrounding a blunt-nosed entry vehicle at high altitudes, and Z) to compare
the theoretical results with available in-flight measurements of electron-

density distributions in the plasma layer.



The present analysis represents an extension of the basic treatment

developed in Ref. Z to the case of a body composed of a spherical nose region

and a conical afterbody section for which the radius of curvature is infinite.

For quantitative result§, the extended theory has been applied to a NASA-

developed RAM-C vehicle (hemisphere - 9 ° cone) for which large amounts
of actual flight data are readily available (Refs. 5-1Z). For low altitudes, these

measurements compared well with the theory developed (Refs. 13, 14) from a

boundary-layer point of view. At high altitudes, the viscous-layer theory developed

in the present paper will be shown to compare favorably with the flight data

in terms of the electron-density profiles across the viscous shock layer at

the base of the sphere-cone vehicle.

The flight data reported here were obtained as part of the Langley

Research Center's Project RAM (RadioAttenuation Measurements) which has

for several years conducted in-flight measurements in order to improve under-

standing of the causes and methods of predicting (Refs. 13-14) or preventing

(Refs. 5-6) the radio-signal degradation during earth entry of a space vehicle.

Electrostatis probes projecting from the spacecraft into the plasma layer have

been flown in an attempt to measure in-flight electron-density distributions

(Refs. 7, ii). On-board diagnostic antennas (Ref. 8), reflectorneters (Ref. 9),

and VHF antennas (Ref. I0) have also been used to obtain information about the

surrounding plasma.

The theoretical analysis will be discussed in Section Z and followed in

Section 3 by a discussion of the chemical model and associated reaction rate

coefficients. The experiment and diagnostic techniques are discussed briefly

in Section 4. In Section 5, the theoretical results are compared with the

flight data and the influences of uncertainties in the che_nical model and reac-

tion rate coefficients are assessed.

2. Z _Yheoretical Analysis

In order to present the analysis in a self-contained and coherent

manner, the major aspects involved in the development of the theoretical

analysis will be included here. More complete details may be found in

Ref. 2.

The assumptions made in the theoretical analysis are i) a thin shock

layer, Z) two-layer model of Cheng(Ref. 15), 3) constant Prandtl and Schrnidt

numbers, 4) binary diffusion due to concentration gradient only, 5) negligible

changes in the flow properties due to the chemical reactions in the flow field,

6) ambipolar diffusion for the electrons and ions, These assumptions have

been made wholly or in part in the previous analyses and the justification for

these assumptions can be found in Refs. 15-19.

A. Basic Equations

Based on the above assumptions the governing equations for the

viscous, ionized shock layer in the merged-layer regime become (Refs. Z, 15)

4



= 0 (1)

au. + pzs au. = a (H- au- (z)

z 9u. 4° (3)

_LL
aH a_

+ _)u"
az aL/

• _tl

(4)

(5)

= e _ T P. (c;/,._ ) (6)

These equations express the conservation of mass, momentum, energy, and

chemical species, respectively, along with an equation of state, (See Fig, 1

for a description of the fiow field. )The eleve_ cher_cal species considered
_re:o_, _, o, _,_o. _o_, o+._, o_, _2' "_._°-', W%o_,s
the twoZ-layer model of Cheng (Ref. 15), these equatlons are apphed to tne

shock layer allowing for the diffusion of the species into the shock-transition

zone by using the •modified Rankine-Hugoniot conditions. Analysis of the

entire flow field performed in Ref' 17 reinforces the applicability of the two-

layer model, and only the viscous shock layer will be considered here,

The boundary conditions for a fully Catalytic solid wall are (Refs. 2, 15):

at _=0 ;, u.= o= u'_ H = /-/k,(z),@ --_b(z>

c_ -- c,:(_> (G , N_)

C_' = 0 (all other species)

(7)



at

_t.u

[n +(8- 7)_/2] (8)

The molecular concentrations are expressed in terms of the other species
by locally conserving the elemental composition. In the case of pure air of
present interest, this yields

C.o,{_)- co+{_) - Co+C_) ,
YYt No YY_ No +

_ m_ (9)
c.}_} : c._-_-c., <_i) C.o(_) C.,o_(_I} - c,,_(_} - c,,+(I)

YYI w o FKI Wo + )

where CN2 (_) is taken to be 0.767 and Co zcoo) = 0.233.

BI Chemical-Reaction Model

The chemical reactions used simultaneously for dissociation and

ionization are given and discussed in detail along with a table in Section 3.

It may be mentioned here that eleven reactions are used involving only

neutral species and fifteen reactions for charged species.

Ca Method of Analysis

In analyzing the Eqs. (I-6) with the boundary conditions and the

chemical reactions, the physical coordinates are transformed as follows

__ _ d__ . G - e &_[ {lO)

In addition,a stream function _is introduced such that @_/_ =-(l+_)(_r)_qu ",

and _/9_ = Cl+_)(Ttr)_()u_ , which satisfies the continuity equation (1}.

A dimensionless stream function _ (_, F } is now obtained by putting

Vf = (I ÷_ ) _ U_ r {r_r )_{ , which yields the relationship _/_F = DG c_/_

where U _- \_/ (U_ c_/B),

Transformation of Eqs. (2-5) yields, after some rearrangement:



Streamwise Momentum

a_ a3f
_F 3

(ii)

Normal Momentum

9,_U_ Z z R.
(12)

Energy

1 a249 P_-i 2_ "_ a (af a_f
p_K_G aF a + P_ (1-tb) K2G _ _F _F _F_]

(135

Species

) (14)

where Sc..,/ = /_L/(e/]£) ) t_ = H_/H,_ , (9-- (H-H_,)/(H_-H_,),

and K z is the rarefaction parameter due to Cheng (1Ref. 15). The term G is a

measure of the thickness of the viscous shock layer in the transformed plane.

The Eqs. (11) - (145 should be considered simultaneously with

appropriate boundary conditions. However, the previous results obtained,

especially those by Chung, Holt and Liu, for the stagnation merged layer,
indicate that the flow-field properties such as the pressure, normal velocity

and enthalpy change very little despite the presence of chemical reactions in

the flow. In the present study, the fluid dynamics equations, Eqs. (ll) - (135,

are decoupled from the species conservation equations, Eq. (145, in an effort

to simplify the analysis. Thus the flow properties such as the streamwise

velocity, the pressure and the total enthalpy will be first obtained from

Eqs. (115 - (135, so that they may be used as inputs to the species conservation

equations. The static temperature, on the other hand, is sensitive to the

chemical reactions present in the viscous shock layer, and must be considered

along with the species conservation equations.

7



Hence, the problem now is to solve simultaneously the soecies-
conservation Eq. (14) for O , N , NO , NO + , O+ , N + , O_ 4_-and N_ +

L L "

The electron-number density level may be obtained from the relationship

rte = _ rl (_ = ionized species), which gives in particles per c. c. :

= No

where N O is AvogadroWs number.

C

yYl_
(15)

In order to obtain solutions to the present problem, the Karman-

Pohlhausen integral-method approach has been used because of the relative ease

of application without unduly sacrificing the accuracy of the results (Refs. 2, 15,

17-20). In addition, the method has been shown to be applicable to the case of

nonequilibrium flow (Ref. 21), and to the case of merged-layer flow (Refs. 2, 20).

Thus, integrating the species conservation Eqs. (14) from F = 0 to F = i, we

obtain after a series of rearrangements,

a_ = _ 0_ T _F- S_ a'_ (16)
7

where -QL - _ c.e_/_ GZUC_F , and E a =_- C_C;/_xTF_.}?" ,
and i = O, N, _qO, NO+, O +, N +, 02 + and _

The various species profiles Cg and the static temperature profile

to be used in the above equations are, for a solid wall (see Ref. Z for details
of de rivation) :

C_ = E,: (F - _ F 3) (17)

and

where

k 2 6 + _z, F + _a Fa= + _z_ F , (18)

N_ = (I + Q;)/(a +Q;),
a

A b = "fblT_:

and
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By substitution of the Eqs. (17) and (18) in the definition of -O__

along with the other flow properties obtained from Eqs. (ll) - (13), we

obtain expressions for these quantities in terms of the unknown parameters

E£ . Other terms such as }<2 _b , G _ etc., are specified as

known input quantities. Since the species production term ot_£ contains

not only the temperature term but other species terms as well, it is neces-

sary to solve Eqs. (16) simultaneously. Thus the problem is to determine

from Eqs. (16) the unknown parameters E9 as functions of the streamwise

distance _ The term E_ denotes the local concentration-gradient

parameter in the transformed coordinate system. Solutions were obtained

by integrating Eqs. (16) on a digital computer along the body from the stagna-

tion region through the sphere-cone junction to the afterbody conical section

by using the Adams-Molton predictor-corrector method. In order to simpli-

fy the analysis while accounting for the change in shock shapes along the

body, the distribution of the shock angle was initially assumed and updated
from the results. Based on the cases considered in the present analysis, two

iterations were usually sufficient to obtain correct shock shape along the body.

The solutions are obtained in terms of the flow variables such as the velocity

and temperature, and in terms of the chemical species distributions in the

shock layer and along the body surface.

In order to test the validity of the theory, the present analysis was

applied to a RAM-C vehicle (9° sphere-cone) because of the availability of

the actual flight data on the vehicle, especially in terms of the electron-
concentration distributions at high altitudes where the flow is in the viscous

shock-layer regime. Solutions are obtained at several altitudes for compari-

son between theory and experiment. This will be discus sed more fully in

Section 5.

Z° 3 Chemical Model Used in Analysis

The initial chemical model used in this study was composed of

IZ species and 64 chemical reactions. Subsequent calculations performed
for the altitude and velocity regime of interest here made it possible to

eliminate many of the unimportant reactions from the model. The reaction

rate coefficients were perturbed by factors felt to be consistent with their

uncertainty (i0 to i00 for many of the ion-atom and ion-molecule reactions)

prior to elimination of a particular reaction. The final chemical model used

in the analysis is given in Table i. The model included the neutral species

N Z, N, O Z, O, and NO and the charged species NZ+, N +, OZ +, O+, NO+'
and e- • For the high altitude conditions of interest here (above Z30,000 ft),

calculations performed at NASA indicated that ablation-product ionization

should not be a problem.

The reaction rate coefficients for the reactions involving only neutral

species (reactions 1-6 and ZZ-Z6) were taken from Refs. ZZ - Z8. The rate
coefficients for the deionization of NO + , O +, N+, 02+ and NZ+

(reactions 7-10 and 13) were taken from the experimental results reported

in Refs. Z9 - 32.

9



Reaction rate coefficients for the charge-transfer and ion-molecule

reactions (reactions Ii, IZ, 16-20) are not nearly as well known as those for

the reactions discussed above. This lack of information is unfortunate be-

cause these reactions do play an important part in the nonequilibrium process

and can have a significant influence on the relative species distributions.

However, for the calculations reported here, the only reactions of this class

that were importantwere reactions II, IZ, and 19. Of these, the rate co-

efficients for reactions II and IZ were used in the data correlation of Refs. 31

and 32 and are felt to be reasonably well known. Perturbation of the rate co-

efficient of reaction 19 by a factor of i0 will change the relative concentrations

of 02 + and NO + somewhat but it will not influence the electron density signifi-

cantly because of the fast two-body dissociative recombination of both NO _ and

02 + . Therefore, even though there is a relatively large uncertainty associated
with the reaction rate coefficient for the ion-atom and ion-molecule reactions,

the electron-density levels and distributions for the particular case reported

here are not significantly affected.

Reaction rate coefficients for reactions 14, 15 and 21 were taken

from Ref. 34. These rates are not well known but, fortunately, these re-

actions do not have a significant influence on the results so that their un-

certainty is unimportant compared with that of several other reactions in the

model.

In these calculations, the vibrational and electronic degrees of freedom

are assumed to remain in thermal equilibrium with translation while the

chemical reactions proceed at finite rates. The free-electron temperature

was assumed to be equal to the heavy-particle translational temperature.

On the basis of the in-flight measured electron temperatures presented in

Section 5 of this paper, this assumption appears to be a reasonable one for

the calculations reported here.

2.4 Description of Experiment and Diagnostics

The RAM C series of flights was designed to obtain data in the velocity

regime of about 25,000 ft/sec where the importance of atomic particle

ionization cannot be neglected. For the purposes of this paper, we are con-

cerned with the second (RAM C-II) and final (RAM C-III) flights in this series.

During this final flight, water and electrophilic liquid were periodically

injected into the plasma layer to reduce the free-electron density level; how-

ever, only data obtained in the absence of injection are presented. Many

different diagnostic techniques were used on these vehicles, but we will

place major emphasis on the e[edtrostatic probe results here because this is

the only diagnostic providing a direct measurement of electron-density profiles

in the plasma.

The reentry flight-path angle for these payloads was -15 ° and both of

them were spin stabilized at 3 rpm. The payload geometries were nearly

identical and consisted of a 6-inch radius hemispherical nose followed by a

9 ° half-angle cone. The RAM C-II nose was covered by a beryllium-cap

10



heat sink during the portion of the entry trajectory of interest here. The

RAM C-Ill had a nose covering of phenolic-graphite charring ablator for heat

protection. For both payloads, the conical section was covered with a teflon

heat shield (Ref. 7).

Figure Z is a photograph of the RAM C-II payload showing the location

of the electrostatic probe rake and a thermocouple rake. E'ight wire probes

were located on the leading edge of the rake so that the last probe extended

to a maximum distance of approximately 7 cm. into the plasma laver as

illustrated on Fig. 3. The collectors were placed so that their longitudinal

axis was at 45 ° to the flow direction and they were biased at a constant negative

voltage so as to collect ions. Detailed descriptions of the probe and rake
construction, beyond that given in Fig. 3, and the data reduction procedure are

given in References 7, ii and IZ and therefore will not be repeated here.

Figure 4 is a photograph of the RAM C-III payload illustrating the
relative location of two rakes of electrostatic probes for this flight. The

rake of constant bias-voltage probes was modified (Refs. Z, IZ) in that the

number of collectors was increased to 16 and the distance that the final probe

extended into the plasma layer was increased from 7 to 14 cm. Other modifi-

cations of wedge and sweep angle were also made and are discussed in Refs. 7,

IZ. The thermocouple rake was modified (Refs. 7, IZ) to include four voltage-

swept thin-wire probes located so that their longitudinal axis was approximately

aligned with the flow direction. The outer wires extended to a maximum distance

of 9.5 cm. from the body into the plasma layer. The voltage sweep,range,

sweep cycle, and data collection procedure are all discussed in detail in
Ref. IZ o The relative locations of the probes and sketches of the rake con-

struction are given in Fig. 5 and 6 for the constant bias-voltage and swept-

voltage probes, respectively.

Z. 5 Comparison of Theoretical and Measured Electron Densities

The electrostatic probes discussed in the previous section were used

to collect current, from which the electron density could be calculated, from

an altitude of approximately Z90,000 ft. down to Z00,000 ft. At this lower

altitude, the probes were retracted into the base region but the probes continued

to operate and the voltages were recorded. However, for the purposes of this

paper, only the electron-density data deduced for the altitude range of Z33,000

to Z75,000 ft. will be compared with the theoretical results. To test the

limitations of the theory, it was applied outside of what is considered the

range of validity (due to the neglect of the _o/@_ term as a higher-order

term (Ref. 15) in the present analyses) to calculate profiles for ZI4,000 ft.
altitude. Perhaps fortuitously, the calculated results compare favorably with

the flight data at this lower altitude as will be shown at the end of this section.

11



For the altitude range of interest here, the calculated mean free paths

were such that the probes were operating in a free-molecular flow environ-

ment. It was therefore possible to reduce the voltage-swept thin-wire probe

data using the theory of Zaframboise (Ref. 36) and the constant bias-voltage

probe data using the theory of Smetana {Ref. 37). The accuracy of Zaframboise's

theoretical results is well known. References 38-40 have demonstrated similarly

good results using Smetana's theory. It can be shown that the number densities

obtained using the results of Ref. 37 are insensitive to the magnitude of the

electron temperature which is important from the viewpoint of flight-data

analysis. This observation is not generally true when obtaining electron den-

sities from probes aligned with the flow.

Figure 7 illustrates the comparison of the calculated electron den-

sities to those measured, on the C-II and C-III flight experiments, using

the electrostatic probes previously described. Comparisons are made for

altitudes of Z33, 000 ft., Z50,000 ft., Z65,000 ft., and Z75,000 ft. At all of

these altitudes, the vehicle velocity was approximately constant at a value

of approximately Z5, I00 ft. /sec. The trajectories flown by these vehicles

and their payload configurations were sufficiently similar that it was not

necessary to perform separate calculations for the individual flights. There-

fore, both the constant bias-voltage probe data of C-II and C-III and the

swept-voltage probe data of C-III are included for comparison purposes.

The uncertainty in the flight data obtained with the constant-voltage probes

is indicated by the crosshatching and the vertical bars. The data reported

are the time-averaged electron densities averaged over one body revolution

and the indicated uncertainty represents the peak-to-peak fluctuations mainly

due to angle of attack. A similar uncertainty existed in the swept-voltage

probe data, but is not illustrated in order to prevent confusion.

The results of the nonequilibrium flow, viscous shock-layer calcula-

tions are indicated on Fig. 7 by the solid lines. The shock-layer thickness

is also illustrated and shown to decrease with altitude up to approximately

265,000 ft. above which it doesn't appear to change much. The agreement

between the calculated electron densities and the flight data is reasonably

good over that portion of the shock layer for which data were obtained. The

theoretical results show that the electron number-density levels increase

near the outer edge of the viscous shock layer. Physically, this seems to be

due to the diffusion of the chemical species into the shock-transition zone,

giving a finite, non-zero level at the shock-layer edge. In addition, low

temperatures exist near the shock-layer outer edge as a result of small shock

angle at the base of the vehicle. This means a high level of mass density

there, and, coupled with the finite electron species level, the electron number

density is thus seen to increase near the outer-edge of the viscous shock layer.

However, calculations were performed (Ref. 41) for a much longer cone (see

Section 5 of this report) of the same nose radius and half-angle. The results

show that the peak electron-density levels are located in the plasma layer away

from the shock edge, partly due to the thinner, weaker shock existing there.
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On the C-Ill flight the voltage-swept probes were used to make measure-

ments of the electron temperature between i. 5 and 9. 5 cm. from the body

surface. Since the translational temperature was used in the nonequilibrium

calculations where, in fact, the electron temperature should have been used

for evaluating many of the rate coefficient for reactions involving free electrons,

these data are particularly important. The results of the electron temperature

measurements are compared with the calculated heavy-particle translational

temperature on Fig. 8. On the basis of this comparison, the electron tempera-

ture appears to be approximately equal to the translational temperature at

the measuring station. With the available flight data, it is difficult to be

definitive about the relative magnitudes of the heavy-particle temperature and

the electron temperature at other locations in the flow field. However, the

flow fields of interest here are highly nonequilibrium and it can be seen from

Table I that the reaction rate coefficients for the electron reactions are pro-

portional to the -i. 5 to -4. 5 power of the electron temperature, suggesting
that if there were a substantial difference between the inflight translational

and electron temperatures, it would be reflected in the measured electron

densities. It obviously cannot be stated with certainty that such is not the
case. What can be said is that if one assumes these two temperatures to be

in equilibrium throughout the flow field, then reasonably good agreement is

obtained between data and theory at the measuring station.

The calculations shown on Fig. 7 were obtained using the chemical

model given in Table i. The upper bound of the backward reaction rate co-
efficients of reactions 7-I0 and 13 were used in this calculation. The values

used for the reaction rate coefficients for the remaining reactions were those

given in the table. Because of uncertainties in rate coefficient values, it

is important to assess their influence on the calculated electron densities

and the subsequent agreement with flight data. This has been accomplished

by repeating the nonequilibrium calculations using the lower bound of the
backward reaction rate coefficients of reactions 7-10, and 13 while main-

taining those for all other reactions at the Table I values. Figure 9 illustrates
the results of these calculations for altitudes of Z33, 000 ft. and Z75,000 ft.

The influence at intermediate altitudes was similar to that shown. The un-

certainty in reaction rate coefficients changes the predicted electron density

by a factor of approximately two over the plasma layer. In general, the re-

sulting uncertainty in the calculated number densities is consistent with the

uncertainty in the flight data as can be seen from Fig. 9.

It is also important to assess the influence of the chemical model on
the calculated electron densities. Calculations were therefore performed

for the probe location using one model in which the only positive ion was +

NO+ and a different model in which the positive ions were NO + , N +, 1Oo2 ,
N +, and O +. The results of these calculations are illustrated on _ig.

for altitudes of Z33,000 ft. and 275,000 ft. The calculated electron densities
at Z33,000 ft. were found to be essentially uninfluenced by ions other than

NO + . However, at 275,000 ft. inclusion of the additional ions in the chemical

model drastically influenced the results. It is important to note that the re-
sults of the calculation which included only the NO+ ion fall well below the

flight data in contrast to the more complete model which agrees well with
flight data. At the probe location, the difference between the calculated results

using these two models decreases monotonically in going from 275, 000 ft. to

233,000 ft.
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The electrostatic-probe data were reduced assuming that the mass
of dominant ion at the probe location was that of NO +. Figures 11 and 12
present calculated nonequilibrium species distributions across the plasma
layer at the sphere-done junction and at the probe location for altitudes of
233,000 ft. and 275,000 ft. For the probe location and at 233,000 ft., the
NO + ion is dominant by approximately a factor of ten. However, at the
junction the dominant ion was calculated to be O+. The calculations performed
for the 275,000 ft. trajectory point indicate that NO + was still dominant

at the probe location but only by+a factor of approximately two. The dominant
ion at the junction was again but NO+ and Oz+ were a close second.

To test the limits of validity of the theory, calculations were performed
for a trajectory point at Z14,000 ft. At this altitude, conditions are such that
theoretically the formulation should not be valid, since the _)'p/_)_ term was
neglected in the present analysis as a higher-order term. However, the re-
sults of the calculation are shown in Fig. 13 to be in reasonable agreement
with the flight data. It is quite possible that this reasonably good agreement at

ZI4, 000 ft. may be fortuitous. However, the result may be of future interest

if one is interested in obtaining an engineering approximation for similar

vehicle and trajectory conditions.

In addition to the electrostatic probe data discussed above, flush-

mounted microwave reflectometers {Ref. 7) were also flown on the RAM vehicles.

These particular reflectometers can be used to ascertain the electron-den-

sity profile in the plasma layer under limited conditions, but they can generally

be used to determine the peak value of the electron density at the antenna

location. Figures 14 and 15 present favorable comparisons of the predicted

electron-density profiles with the peak value of the electron density as deter-

mined from the flight data {Ref. 9} for X/R N of 5.2 and 7.65 {stations 3 and 4
of Ref. 7} respectively, for altitudes of 233, 250, 265, and Z75 kilofeet. Due

to the nature of the reflectometers, plasma electron densities beyond _/Zk

of 0.8 would not be seen. The agreement between the theoretical results

and the flight data is considered to be reasonably good.

Reflectometer measurements were also performed in the nose region

at X/ R N of about 0. 9 and just after the hemisphere-cone junction at Z. I.
However, the agreement between theoretical prediction and flight data was

not nearly as good for these locations as it was for the two downstream

stations. In the nose region, the calculated peak number density was about

Z0 times greater than the reflectometer data and at X/R N of Z. i the calcu-
lated peak value was about I0 times greater than the reflectometer data.

At the present time, the reason for the discrepancy between the

reflectometer data at X/R N of 0.9 and Z.I and the theoretical prediction is

not understood. As possible c_uses, the translational-vibrational temperature

nonequilibrium and the translational-electron temperature nonequilibrium were

investigated for an altitude of Z65,000 ft. A particular streamline was chosen

which enters the viscous shock layer at about 30 degrees from the stagnation

line. The results of the calculations of the vibrational relaxation distance for

molecular nitrogen indicated that translational-vibrational equilibrium was
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achieved in less than 0.8 ca. behind the shock. Molecular oxygen would
achieve translational-vibrational equilibrium in significantly less distance.
It therefore appears reasonable to assume translational-vibrational equilibrium
for the viscous hypersonic flow around a RAM-C vehicle at high altitudes.
In addition, comparison of the distribution of the electron temperature along
the streamline noted above with the nitrogen vibrational temperature and the
heavy-particle translational temperature showed that it is alopropriate to
assume translational-electron temperature equilibrium in the nose region.

Z. 6 Conclusions

In this paper, a multicomponent, ionized, viscous shock-layer flow
about a blunt-nosed vehicle (sphere-cone) at high altitudes has been theo-
retically analyzed. This was accomplished by transforming the coordinates
and the flow variables, and by utilizing the Karman-Pohlhausen integral
method to the Navier-Stokes equations and the species-conservation equations
under the thin shock-layer assumption.

The theoretical development was applied to a RAM-C sphere-cone
vehicle (9 ° semi-cone angle) developed by NASA because of the wealth of
in-flight measurements. Eleven chemical species (Or, N , O, N, NO,
NO+, O+, N+, OZ+ N2 + and e-) were included in t_e ar_alysis for eleven
reactions involving only [he neutral species and fifteen reactions for charged
species. Solutions were obtained at various altitudes where the viscous
shock-layer flow exists around the vehicle. The theoretical results for the
electron-concentration profiles compare favorably with the experimental
data obtained using electrostatic probes located at the base of the vehicle.
In addition, the heavy-particle translational temperatures obtained from
theory seems to agree fairly well with the electron temperatures measured
from the Voltage swept thin-wire electrostatic probes.

The effect of the reaction-rate coefficients on the quantitative theo-
retical results was also analyzed and shown to be within the uncertainty range
of the flight data. The results also demonstrate the importance of including
in the chemical model the positive ions N+, O+, OZ+, N2+ in addition to
NO + for high altitudes and velocities considered here.
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3. ANTENNA IMPEDANCE DETERMINATION OF ELECTRON DENSITY

3.1 Introduction

Many (Refs. 7,9,42-48) different diagnostic techniques have been em-

ployed to determine the electron-density level in the plasma layer surrounding

an entry vehicle. Several (Refs. 9,4Z-48) of these instruments can be located

flush with the vehicle skin while others (Ref. 7) protrude into the flow field. It

is generally recognized that if one is interested in obtaining information about

the electron-density gradient and level in the plasma layer, then the protruding

probes are the most desirable. However, for some vehicles and under certain

flight conditions, protruding objects are not feasible thus requiring use of flush-

mounted diagnostics in order to obtain as much of the desired information as

possible.

Bailey and Swift (Ref. 49) have treated theoretically the problem of a

circular-aperture antenna excited in the TEll mode. Swift, et al. (Ref. 46) and

Grantham (Ref. 9) have used circular antennas on a re-entry vehicle to obtain in-

flight admittance measurements from which they could deduce the plasma prop-

erties in the near field.

The accuracy of the calculational technique (Ref. 49) has not been assessed

for a flowing plasma and it is therefore the purpose of this study to investigate

the agreement between experimental and theoretical antenna admittance for a

known distribution of electron density in the plasma layer adjacent to a flat-

plate surface located in a flowing plasma. The experimental phase of this work

is an extension to the previous work of Taylor (Ref. 50) who utilized the same

antenna employed here to perform admittance measurements in a shock-tube

flow but under much different gas-dynamic conditions. His boundary layers

were significantly thinner than the present ones and the axial length of the

uniform plasma was much less. The collision frequency, _)/co of his plasma

(0.1 torr experiments) was less than 0.15 which is of the same order as that

obtained here. Taylor illustrates good agreement between his admittance data

and the predictions of Croswell, et al.(Ref. 51). However, because his boundary

layers were thin, it was not possible to probe them in order to obtain a

measured electron-density profile for use in the calculations.

3. Z The Input-Admittance Method of Plasma Diagnostics

The theory of the input admittance of plasma-covered aperture anten-

nas has been studied by a number of investigators over the past several years.

These studies were motivated by the desire to extend the diagnostic range of

antennas beyond a simple marker of critical electron density. If the antenna

consists of a waveguide opening onto a flat ground plane, the normalized

input-admittance expression is given by

I I ff --_
oLS

_PERWURE

(I)

16



where Y¢ is the characteristic admittance of the waveguide,

impressed voltage, _p is the electric field at the aperture,

netic field, cLS is the surface element in the _-_ plane, and

the ground plane. The relationship between input admittan.ce

reflection coefficient P is:

C-
I +_N

Vo is the
is the mag-

= 0 defines

and the complex

(2)

The near-field properties of the circular-wave guide antenna were

investigated by Bailey and Swift (Ref. 49), and later generalized to account for

stratified layers of inhomogeneous dielectric material (including plasmas).

The formulation of the problem resulted in a reduction of Equation (I) to a

single integral which was numerically evaluated as a function of collision

frequency, electron density, and gradients of electron density.

Prior to the shock-tunnel experiments, the input admittance was cal-

culated as a function of boundary-layer thickness (_) and free-stream

electron density for the antenna shown in Fig. 16. The plasma profiles used

for these calculations (given in Fig. 17) were assumed to be parabolic, with

parameters adjusted so that the electron density was zero at the wall and

the free-stream value at _ . The particular values of _ selected for the pre-

experiment analysis were 0, 0.2, 0.4, 0.6, I. 2, and 2.4 inches. Beyond

the point at which n¢/me)er reached I, the plasma was assumed to be homoge-

neous to I0 cm which was sufficiently thick so that reflections from the air-

plasma interface at I0 cm were negligible.

The theoretical results are shown in Fig.18 as a function of 0_ and

ne./rlz)cr for _/oo = 0. i. These results suggest the following diagnostic

applications cf the circular-aperture antenna:

n¢/n¢)c_

i. The measurements of the initial response of the antenna near

= 1 can be used to uniquely infer both ha/he)or and _ .

Z. When the plasma is overdense, the admittance measurements

can be used to infer either ne/nz)cr or @ . Some "a priori" knowledge of

one of the parameters must be given in order to provide a measurement of

the other.

The boundary-layer electron-density profile was measured at two

locations on the flat-plate model for one of the experimental conditions used

in this work. With this information, it was possible to theoretically estimate

the magnitude of the boundary-layer thickness for the remaining experimental

conditions. By assuming that the peak electron density occurs at the boundary-

layer edge, which introduces some error because previous experimental

results (Refs. 5Z,53) for similar conditions suggest that it occurs at distances

slightly less than the boundary-layer thickness, it was possible to obtain reason-

able estimates of electron density in the overdense region. It is worth noting

that the antennas and the calculations reported in Fig. 18 can be scaled for

application at frequencies other than S-band. The antenna for which these

calculations and experiments were performed is a reproduction of one flown on

a re-entry experiment (Ref. 8) and will henceforth be designated as the RAM C-

III S-band antenna.
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Another type of circular-aperture antenna was also used in these

laboratory experiments and in the RAM flight experiments. This antenna

was designed for and used on the RAM C-II flight two years before the

boundary-value problem of the circular-waveguide antenna was developed.

Although the antenna operated at the same frequency as the one discussed

above, there were some major design differences. Referring back to Fig.

these differences are:

14,

i. The antenna was extended through the dielectric material so

that the aperture was contiguous to the plasma.

Z. The diameter of the antenna was designed to be smaller than

that of the one shown in Fig. 16 in order to reduce the effects of lateral gra-

dients of electron density over the aperture.

3. Because the waveguide section was near cut-off, tuning screws

were inserted to match the antenna to free space. This tuning was accounted

for in the theoretical model.

Subsequent to the flight of RAM C-II, the aperture admittance was

computed using Equation (I) in connection with the transformation derived in

AppendixA. This transformation was used to calculate the admittance in

preparation for the tunnel experiments described herein.

3.3 Experimental Apparatus and Technique

An engineering drawing of the RAM C-Ill S-band antenna used in

the experiments is shown in Fig. 16. It consists of a circular cavity 4. 5

inches deep and Z.65 inches in diameter. A co-ax-to-waveguide transition
was inserted 0.4 inches from the back wall of the cavity, i.e., one-quarter

of a guide wavelength. The length and diameter of the probe were adjusted
to obtain a I:I impedance match between the waveguide and RG-141 coaxial

cable at the operating frequency of 3. 348 GHz. An 0. 8 inch teflon plug was

inserted into the waveguide flush with the aperture and the ground plane was

covered with 0.3 inches of plexiglas. The reasons for selecting these dimen-

sions is discussed elsewhere (iRef. 46).

The antenna described above and a second one mentioned previously

were mounted in a sharp flat-plate model which was subsequently placed in

the fiberglas nozzle of the shock tunnel (iRef. 5Z). The C-III antenna was operated

at 6.75 inches from the plate leading edge and the C-II antenna was operated

at II.Z5 inches from the leading edge. The boundary layer over the plate

provided an electron-density gradient in the near field of the antenna. This

boundary-layer was sufficiently thick so as to permit good resolution of the

electron-density profile by detailed probing with thin-wire Zangmuir probes.

The flat-plate model was 7-inches wide by 30-inches long. The top

surface was constructed of plexiglas with the exception of a 1-inch long stain-

less-steel leading edge. Boundary-layer surveys were performed at distances
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from the leading edge of 6.75 and ii.25 inches. At the most upstream location,
the flow was considered to be two-dimensional since soanwise static-pressure
measurements obtained by Boyer, et _I. (Ref. 53) at 5 and_10 inches from the
leading edge, for similar flow conditions, indicated that the flow was uniform
across the plate. However,for the ii.25 inch location pressure measurements
were not obtained, and it is possible that the flow here may hot have been two-
dimensional.

During all of the experiments noted above, an independent measure-

ment of the integrated free-stream electron density was obtained at II inches

and one inch upstream of the flat-plate leading edge using microwave inter-

ferometers operating at frequencies of 35 and 17 GEm, respectively.
J

The probes used in these experiments were constructed by surrounding

0. 004 inch diameter tungsten wires with a quartz envelope, leaving a nominal

0.400 inch length of bare wire exposed. Immediately prior to each run, the

tungsten oxide was removed by placing the probe in a dilute solution of sodium

hydroxide and passing approximately 400 _a of current through the circuit

for approximately I0 minutes. In performing the probe measurements, care

was taken to keep the probe holder far out in the flow to avoid any possible
interference effects in the subsonic-flow region. The quartz tubing surrounding

the probes was bent as shown in Ref. 52. The 1/16-inch diameter tubing used

in the probe construction did not permit probing to distances less than 0. 060

inches off the plate surface.

Figure 19 illustrates the two S-band antennas mounted in the flat-plate
model. Also shown is an X-band horn antenna, the results of which are not

reported here. A schematic diagram Of the four-probe reflectometer is given

in Fig. 20. The reflected signal was also monitored as indicated on the sche-

matic. This system was convenient for data reduction purposes in that five

arcs were always available for Smith chart construction. Waveguide instead

of coaxial cable was used wherever possible in the system.

As part of the pre-experiment calibration, the diode spacings were

measured using a moveable short. If the microwave diodes are numbered so

that #I is nearest the generator and #4 is nearest the short, then the spacings

were I-2 = 0. 1255 A_, 2-3 = 0. 1218 A_, 1 3-4 = 0. 1278 _ , and 4-I = 0. 1252
where _ was the guide wavelength of 1.378 cm. The reflectometer system

was tuned using a matched load with VSWR of approximately 1.025 to 1.035.
Eachof the diodes was then calibrated as follows. An attenuation of 3db was

set on the variable attenuator and the four diode outputs were adjusted until

they were equal. The attenuation was increased in increments of i db until reaching

26 db. The attenuator was then set to _ attenuation and the final readings

taken. The voltages were normalized so that the diode output at 3 db attenua-

tion represented the diameter of the Smith chart. During the experiments

this 3 db tare was always set on the variable attenuator.

outside

sult s.

The free-space admittance was measured with the antenna inside and

of the shock tunnel, but no difference was observed between the re-

Aluminum foil was then place d over the aperture of the antenna q +_
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obtain the antenna-short reference. In addition, the coaxial cable was shorted

at the antenna input terminal to obtain an additional reference.

The antenna admittance and the Langmuir-probe measurements were

performed in separate experiments. In both cases, the test gas was carbon
monoxide but the level-of residual nitrogen present in the test gas was dif-

ferent. The carbon monoxide used in the antenna experiments was supplied

by Lif-O-Gen, Inc. A chemical analysis of the gas indicated the following:

Z5 ± 5 ppm of nitrogen, argon less than Z ppm, carbon dioxide less than

i0 ppm, helium less than Z ppm, oxygen less than 2 ppm and water less than

1 ppm. Unfortunately, a sufficient quantity of this gas could not be obtained

for the boundary-layer measurements and it was necessary to use ultra

high-purity grade supplied by Air Products and Chemicals, Inc. The prin-

cipal impurity in this gas was nitrogen estimated to be on the order of 1500

to Z000 ppm. The presence of this additional nitrogen was important from

a chemical kinetics viewpoint and had to be considered. However, even with

the nitrogen, the dominant ion in the free-stream flow was calculated to be
C + consistent with the calculations for the purer gas.

3.4 Electron-Density and Electron-Temperature Measurements

The boundary-layer measurements of electron density and electron

temperature reported here were performed in carbon monoxide that had

expanded from equilibrium reservoir conditions of 7060 ° I_ at 17.3 atm.

The relative magnitudes of the mean free paths Az._ R___ _ zke-_ _ zk___

and _e-e were calculated using the expressions summarized by Sonin (Ref. 54

and presented in Fig. 18. The electron density was obtained from the ion-current

portion of the Zangmuir-probe current-voltage characteristic using the free-

molecular flow theory of Zaframboise (Ref. 36). In some cases the electron-

current portion of the characteristic could be used to obtain electron density which

was found (Ref. 55) to be in good agreement with the value obtained from the ion
current. An ion mass of IZ was used in the data reduction consistent with the

calculated species concentrations presented in Ref. 30.

Electron-density measurements obtained in the boundary layer at

6.75 inches from the plate leading edge are shown in Fig. 2Z. The measured

boundary-layer values approach the estimated free-stream value at approxi-

mately I.Z inches from the surface. This estimate of the free-stream number

density was obtained from microwave-interferomete _rdata taken at the measuring

station in the absence of the plate, assuming that the plate does not significantly

disturb the flow.

Since the dominant ion in the free-stream flow was C + and the electron-

temperature measurements shown in Fig. Z3 suggest a relatively constant
value, it is unlikely that gas-phase recombination of ions and electrons would

be important. However, it is difficult to be certain as to whether or not the

plexiglas surface would provide a good catalyst for surface recombination
of ions and electrons. If the wall were catalytic, then a diffusion controlled
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boundary layer would be appropriate and it would have a number-density

profile consistent with the measurements. One cannot be certain without

detailed calculations which were beyond the scope of this work, but it is

likely that the boundary-layer gas phase chemistry was frozen at an upstream

value and that surface recombination controlled the boundary-layer electron-

density profile.

The boundary-layer electron-density and electron-temperature pro-

files obtained at II.25 inches from the leading edge are presented in Figs. 22

and 25. The number-density measurements suggest a slightly thicker boundary

layer at this location but the profile shape is similar to that measured at

6.75 inches. The electron temperature was again found to remain rather

uniform through the boundary layer and along the plate.

The antenna measurements to be discussed later were performed for

several reflected-shock reservoir conditions in order to achieve a range in

the magnitude of _e/_e)=r, but the boundary-layer measurements were per-

formed for only one experimental condition because of the detailed nature of

this experiment. The range of test conditions was such that boundary-layer

electron-density profiles in terms of ne/ne)_ vs _/6 could be constructed

and assumed similar. This profile could then be appropriately adjusted for

the different free-stream conditions. To aid in constructing the electron-

density profiles for conditions other than the measured one, a simple estimate

of the boundary-layer thickness, 6 , was required. The technique selected

was that described by Burke (Ref. 56) and Figs. 22 and 24 show that the results

of this method are somewhat less than the value that one might have estimated

on the basis of the electron-density measurements. However, for the intended

purpose of scaling the profiles, this result is quite satisfactory.

3. 5 Admittance Measurements

The RAM C-III antenna was installed in the flat plate at 6.75 inches

from the leading edge and the top side of the plate was located on the nozzle

centerline with the leading edge at 22. 5 inches from the nozzle throat. For

these experiments, the peak electron density over the antenna was varied

in the range of approximately 0.5 < ne/ne)c, < 5 by adjusting the strength

of the incident shock. Th_ experimental results obtained, including the arc

lengths for the five diodes, are summarized in Table If.

The RAM C-II antenna was operated at ii.25 inches from the leading

edge. The major differences between the 6.75 and Ii. 25-inch measuring

stations are the boundary-layer thickness and the peak value of the electron

density. Several experiments were performed at the ii. 25-inch location

and these spanned the range from 0. Z < vle/zle)cr<2._. The results of these

experiments are given in Table Ill.

Figure 26 is typical of the oscilloscope records obtained for the reflec-

tometer diodes. The test-flow duration is noted on the oscilloscope records.
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The 50-_sec duration pulse near the right side of these records is the zero-
signal level obtained by turning off the TWT power supply with a gating
pulse. The horizontal line is the no-plasma signal level recorded approximateb
two milliseconds prior to plasma arrival at the plate leading edge. A limited
number of lower confidence-level data points can be obtained from the post
test-time plasma. In some cases this was done and the data points are so

designated in Table II and III.

All of the reflectometer data obtained in the CO plasma with this

antenna are compared with the theoretical predictions on Fig. Z7 for the

RAM C-III antenna and on Fig. Z8 for the RAM C-II antenna. The circles

represent the uncertainty of the measurements as determined by the inter-

section of the five diode voltages. Much of the phase rotation uncertainty asso-

ciated with these records was due to the #i diode arc being consistently long.

Care was taken to calibrate each of the oscilloscopes just prior to and after

each experiment using a vacuum-tube volt meter, thus it is doubtful that the

difficulty is associated with a calibration error. This diode appeared to

operate satisfactorily when obtaining the free-space admittance for which the

circle of uncertainty was comparatively small. The estimated uncertainty

in the value of n_/me)_ is also given on Figs. 27 and 28.

The theoretical results presented in Fig. Z7 were obtained using a

parabolic profile of electron density that represented the best fit to the

electron-density profile measured at the antenna location (6 -_ i. Z inch). The

comparison between the theoretical and the experimental values of ne/ne)cr

presented in Fig. Z7 indicates a consistent difference of about Z0 to 40 percent.

This discrepancy is possibly due to an uncertainty in the experimental deter-

mination of the free-stream electron density over the antenna. Recall that

the admittance measurements and the boundary-layer probing measurements

were performed in separate experiments in order to avoid interference effects.

Microwave interferometer measurements of the averaged free-stream electron

density were performed at 1 inch and ii inches upstream of the plate leading

edge for all experiments and thus provided the only quantitative link between

the measurements. When obtaining the admittance measurements, these

microwave interferometer results were extrapolated to the antenna locations

in order to obtain an estimate of the free-stream electron density assuming

that the expanding plasma was not influenced by the presence of the model.

Figures ZZ and Z4 illustrate that the extrapolation described above is reason-

ably good, but an error of Z0 to 40 percent in the estimated electron density

would be within the uncertainty.

Figure Z8 presents a comparison of the experimental data with the

theoretical results for the RAM C-If antenna. These results were obtained

with the antenna located at 1 I.Z5 inches from the plate leading edge. The

experimentally determined electron-density profile given in Fig. Z4 was used

in order to obtain the theoretical results presented in Fig. Z8. The results

obtained using this antenna are similar to those obtained for the C-III

antenna in that the experimentally determined reflection coefficients are about

30 percent less than the theoretical values at values of ne/ne)cr less than I.

The agreement becomes better as the electron density ratio increases to

22



values greater than 1. The experimentally determined phase rotations are

shown to be generally in better agreement with the theory except at the very

small values of ne/ne)cr. Phase measurements at low values of ne/ne)cr
is more difficult than at higher values because of the small reflection
coefficients.

3. 6 Conclusions

Two circular-aperture flush-mounted antennas, for which a theo-
retical description of the antenna-plasma interaction has been developed,

were operated in the presence of ionized boundary layers of low collision

frequency. The boundary-layer electron-density profile was independently
measured using voltage-swept thin-wire probes and this measured profile

was used as an input condition for the theory. Both antennas demonstrated
marked increases in reflection coefficient and phase rotation when the peak

electron density over the antenna approached critical. In general, good

agreement was obtained between the predicted and measured reflection coef-

ficient and phase rotation over the range of r_e/_e)cr studied. These results

illus trate that the input admittance method can be effectively used to obtain

local measurements of electron density. Calculations of the admittance of

a flush-mounted antenna have been presented as useful working curves from

which boundary-layer thickness and free-stream electron density can be

determined. These curves can be used at arbitrary frequencies by appro-

priate electromagnetic scaling.
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® USE OF POSITIVELY BIASED ELECTROSTATIC PROBES TO OBTAIN

ELECTRON DENSITY IN COLLISIONLESS FLOWS

4.1 Introduction

There are several well known (Refs. 57-61) advantages of using the

electron-current portion of an electrostatic-probe current-voltage character-

istic for determination of electron density. Perhaps the most important

advantages are that the collected current is independent of the ion mass and

also independent of the probe orientation relative to the mass motion of heavy

particles because of the relatively high electron thermal speed. In addition,
the collision cross sections for electron-particle interactions are generally

smaller than those for ion-particle interactions suggesting that the collisionless-

flow approximation should be valid over a greater range of gas densities.
Further, the electron current collected by the probe can be made insensitive

to the electron temperature by working at large probe voltages. Sutton (Ref. 6Z)

has described the feasibility of using thin-wire probes biased for electron
current in order to measure electron-density fluctuations in hypersonic turbu-

lent wakes. However, relatively few (Ref. 61) experimental studies have been

reported in the literature that have attempted to show that the electron-current

region can be successfully used to obtain these electron-density measurements
within the framework of existing theoretical results. It is thus the purpose of

this paper to report the results of an experimental study undertaken in order

to determine if the existing theoretical results of Zaframboise (Ref. 36) for the

current collected by thin-wire probes operating in the f.ree-molecular flow

regime could be successfully used in the electron-current region. Many people
have illustrated the correctness of this theory for the ion-current region. The

details of Zaframboise's work are well known and will not be described here.

The current studies were motivated by the availability of in-flight

voltage-swept probe data obtained by Jones (Ref. 63) as part of the Langley

Research Center RAM program. The voltage applied to his probes was

sufficiently positive that the probes were swept well into the electron-current

region at altitudes for which the free-molecular flow approximation should be
valid. Electron densities have been obtained from the ion-current portion of

his probe characteristics and are reported elsewhere (Ref. 63).

Center (Ref. 61) used a pressure-driven shock tube to produce a plasma
behind the incident shock in which he performed probe experiments under free-

molecular flow conditions. The voltage on his probes was held constant during

the experiment because of the rapidly varying conditions behind the incident

shock. By performing a series of experiments he was able to construct the

current-voltage characteristic and subsequently show that the experimental

data are predicted by the theoretical results of Zaframboise (Ref. 36). The

results presented in this paper are in agreement with those described by
Center. However, the fluid-flow environments in which the experiments were

performed were significantly different and the probe characteristics were

obtained by sweeping the probe voltage instead of maintaining constant voltage.
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4.2 Experimental Apparatus and Technique

A pressure-driven shock tube was used to produce a reservoir of

high-temperature gas which was subsequently expanded in a conical nozzle

constructed of Fiberglas. A detailed discussion of this shock tube and nozzle

is given in Refs. 64 and 65.

The majority of the probe measurements reported here were performed

in the boundary layer of a sharp flat plate mounted in the nozzle flow such that

its leading edge was 22.5 inches from the throat and its top surface was on

the nozzle centerline. A few experiments were also performed in the absence

of the plate with the probes located on the nozzle centerline at 32. 5 inches

from the throat. An independent and simultaneous measurement of averaged

free-stream electron density was obtained at II. 5 and 21. 5 inches (31. 5 inches

for the free-stream experiments) from the throat using microwave interfero-

meters operating at 35 and 17 GHz, respectively. Carbon monoxide was used

as the test gas for the boundary-layer experiments. The carbon monoxide

test gas was expanded from an equlibrium reservoir condition of 7060 ° K at 17.3

atm pressure. However, the free-stream measurements were performed in

both carbon monoxide and nitrogen test gases. The nitrogen test gas was

expanded from an equilibrium reservoir condition of 7200 ° K at 17. 1 atm pres-

sure. Previous boundary-layer experiments have been reported (Ref. 52) which useq

nitrogen as the test gas but in these measurements the probes were not swept

into the electron-current region.

The carbon monoxide used here was ultra high-purity grade supplied

by Air Products and Chemicals Inc. The principal impurity in this gas was

nitrogen estimated to be on the order of 1500 to 2000 ppm. The nitrogen test
gas was ultra-pure carrier grade also supplied by Air Products and Chem-
icals Inc. A chemical analysis of the nitrogen gas indicated the following:

oxygen less than 0. 5 ppm, total hydrocarbons less than 1 ppm, and water

less than 0. 15 ppm.

The probes used in these experiments were constructed by surrounding

0.004 in. diameter tungsten wires with a quartz envelope, leaving a nominal

0.400 in. length of bare wire exposed. Immediately prior to each run, the

tungsten oxide is removed by placing the probe in a dilute solution of sodium

hydroxide and passing approximately 400 _a of current through the circuit

for approximately I0 minutes.

4.3 Discussion of Results

By using Laframboise's (Ref. 36) theory to obtain electron temperatures and

electron densities from the experimentally determined probe characteristics,
it has been assumed that the flow conditions were collisionless with respect

to the probe diameter. At all of the measuring stations, the electron mean

free paths were many times greater than the probe diameter. Because of the

relative insensitivity of electron collection to the magnitude of the ion-neutral
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and neutral-neutral mean free paths, it is anticipated that the electron tempera-
ture deduced from the electron-retarding region and the electron density
deduced from the electron-current region of the probe characteristic should
be correct. The ion-neutral mean free path was the shortest, being slightly
greater than the probe diameter at the upstream measuring station. How-
ever, the electron-density results presented later in this paper suggest
that the ion-neutral mean free path apparently had a relatively insignificant
influence on the collected ion current. The calculated mean free paths and
species concentrations in the expanding carbon monoxide and nitrogen flows
used for the present experimental test conditions are given in detail in Re fs. 30
and 66, respectively.

It is important to note that the carbon monoxide test gas used in the

work reported in Ref. 30 had substantially less impurities (Z5 ppm nitrogen)

than that used in the present experiments (1500 to Z000 ppm nitrogen). It

was not possible to obtain additional CO from Zif-O-Gen Inc. with the low

nitrogen content. The additional nitrogen appeared to influence the chemical

kinetics of the expanding plasma by decreasing the electron-density level by

a factor of approximately two throughout the expansion. For the purposes

of this study the details of the kinetics are important and had to be considered.

Even with the nitrogen present, the dominant ion in the expansion was calculated
to be C + so that ion mass 1Z was used inthe analysis of the ion-current data.

The method of probe-data reduction used here has been outlined in detail in

Refo67 and will not be repeated. The familiar normalized ion-and electron-

current densities( _/+ and __ ) were taken from Zaframboise's theoretical

results for T_ / Te -- 0 and are given in Figs. Z9 and 30,respectively.

For the experimental conditions considered here the T£/[e = 0 theoretical

results are satisfactory since the free-stream ion temperature to electron

temperature ratio was on the order of 0. 1 to 0. Z.

Table IV presents a summary of the experimental results obtained as

part of this study. Included in this table are the electron densities deter-
mined from the ion- and electron-current portions of the current-voltage

characteristics, the calculated values of _¢_/AD for these regimes, a

comparison of (V_ - V_ ) obtained from the tangent intercept technique and
an estimate obtained from the theory, the electron temperatures determined

from the electron-retarding region, and electron densities determined using
a microwave interferometer when free-stream probe measurements are given.

Figures 3 1 and 3Z present the ion-current region and the electron-re-

tarding and electron-current regions respectively of the probe characteristic
obtained in the boundary layer for a typical experiment. On Figure 31 the ion

current is utilized to deduce the number-density at %_= -Z5. For this par-

ticular case the value of (_./AD)21+ was 16. 55 which is in the orbital-
motion limited regime. The corresponding value of ;_e/Ap was 1.72 and the

floating potential was -0.43 volts. The electron density calculated usin_
the theoretical results of Zaframboise (Ref. 36) was l.Z x 10 I0 e-/cm 3 • Also

shown on Fig. 31 is the electron density calculated using the electron current at

potential of %_o= +5. The electron current at 9_ = +7. 5 was also used but
the resulting electron density was essentially unchanged. The value of
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(R_/AI))__ at _@ = +5 was calculated to be 7.36 and the corresponding value

of R_/Ao was 1.78 whichis reasonably close to the value calculated from

the ion current. _he number density deduced from the electron current was
1.3 x i0 I0 e-/cm which is in very good agreement with the value previously

obtained from the ion-current portion of the characteristic.

The electron temperature was obtained from the results presented in

Fig. 32. The value of _/_T e for this particular experiment was 5.37 or

Te = 2160 ° K. By extrapolating the line faired through the retarding-field

region to intersect with a line faired through the electron-current region

one can obtain an estimate of the plasma potential. For this case, the extrapo-

lation gave a plasma potential of +0.5 volts; the floating potential, which is

easily determined from Fig. 31 was -0.43 volts resulting in an experimental

value of (V,, - V_ ) = 0.93 volts. Using the theoretical expressions given

in Eqs. 1 and 2 of Ref.59 and equating _/ to #e at the floating potential, one

can obtain an estimate of the value of (if_- V_)e_. from the theory to be given

by (_Te /e) I__ (r_q_/_e) °'_+ . We will refer to this value as(V® - V_)est

and compare it in Table IV with (V_ - V#)e_ determine from the experimental
data using the tangent intercept method in a manner illustrated on Fig. 32.

For the purposes of this paper, _+ was assumed to be equal to 1.0 which

results in a maximum error in (V_- V_) of i0 to 12 percent for the conditions

of these experiments.

Assumin_ C + to be the dominant ion, then (V_ - V¢)_st m (Te/232o);

then assuming N+ to be the dominant ion in the nitrogen experiments, gives

(V_- V_)es_ _ -re/22qo. Using the previous expression for the C _ ion

the value of (V. - V_)es_ for the results presented in Figs.31 and32is equal

to 0. 932 as compared to the experimental value of 0.93. The agreement

between(V_- V_) estimated from the theory and the value obtained from the

experiment was not always this good (as illustrated in TableIV but in general

the agreement was within 0.2 volts.

Table IV also contains number-density results obtained in the free-

stream flow using both the microwave interferometer and voltage-swept probes.

For the CO plasma, the probe-determined electron densities were in good

agreement with each other (ion and electron current) but in two of the three

cases they were about 30 to 40 percent less than the microwave results. This

same general trend was reported in Ref. 30 but the reason for the disagree-
ment is unknown. Probe and microwave-interferometer results for a nitrogen

plasma are also reported in Table IV. With the exception of the final entry in

the table, the number densities determined from the ion- and electron-current

portions of the characteristic are in good agreement. In all cases, the number

densities determined from the ion current were in good agreement with the

mic rowave- interfer ometer measurements.

Figures 33 and 34 present a comparison of the experimentally determined

current-voltage characteristic with the theoretical characteristic of Laframboise.

The data used here are the same as those given in Figs. 31 and 32. To obtain

the comparison, the plasma potential ( V_ ) was assumed to be 0. 5 volts con-

sistent with Fig. 32 and the experimental characteristic was matched to the
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have been made wholly or in part in the previous analyses and the justification

for these assumptions can be found in Refs. 15, 16, 18, 19.

Based on the above assumptions the governing equations for the viscous,

ionized shock layer in the merged-layer regime become

(9_r_) + ! (o_rr{) = o , (I)
@z au,

9u " a______+ eu- au. = _l (p. au.) , (2)

Ou. 2 _o

Ro _V
!

(3)

a_
(_u. +

+ {
(4)

ea ac: + _ ac.z = a (99, _ ) + &. (5)

eg_T Z(Cz/YY_%) . ,_o -- (6)

These equations express the conservation of mass, momentum, energy, and

chemical species, respectively, along with an equation of state. (See Fig. 1

for a description of the flow field.) The eleven chemical species considered

are: 0 2 N2, O, N, NO, NO + , O +, N +, O2+ , N2+ , and e- . With
the two--{aye_ model of Cheng, Equations I-6 are applXed to the viscous

shock layer allowing for the diffusion of the species into the shock-transition

zone by using the modified Rankine-Hugoniot conditions. Analysis of the

entire flow field as performed in Refo 19 reinforces the applicability of the

two-layer model, and thus only the viscous shock layer will be considered

here. The chemical reactions and their associated reaction rate coefficients

used simultaneously for dissociation and ionization are given in Table 1 and

are discussed in detail in Ref, 69. It is appropriate to note here that eleven

reactions are used involving only neutral species and fifteen reactions in-

volving charged species.
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In obtaining solutions to the differential equations, the coordinates

and the flow variables were first transformed, and the Karman-Pohlhausen

integral method was applied because of the ease of application and the rela-

tively small computation time without unduly sacrificing the accuracy of the

results (Refs. Z,ZI,69). The transformed equations were integrated along the

body from the stagnation region through the sphere-cone junction to the afterbody

conical section by using the Adams-Molton predictor-corrector method.

In order to simplify the analysis while accounting for changes in shock shape

along the body, the distribution of the shock angle was initially assumed and

updated from the results. Based on the cases considered in the present

analysis, two iterations were usually sufficient to obtain the correct shock

shape for the body. The solutions are obtained in terms of the flow variables

such as the velocity and temperature, and in terms of the chemical-species

distributions in the shock layer and along the body surface.

The present analysis was applied to two different bodies: a 9 ° sphere

cone with a 6 inch nose radius at Z33 kft and a Z0 ° sphere cone with a 4 ft nose

radius at Z80 kft and 310 kft. The latter geometry was used to approximate

the windward plane of symmetry flow configuration of a space shuttle. The

free-stream velocity for both bodies was taken to be Z5, I00 ft/sec. Solutions

were obtained for a flow field including not only the nose region but also the

far downstream region (?C/_N _" q0).

5.3 Results and Discussion

Figure 35 shows the distributions of the viscous shock-layer thickness

and the temperature behind the shock for the two (9 ° and Z0 °) sphere-cone

bodies. It is noted that the temperatures behind the shock in the nose region

are about equal for both bodies, due to the same free-stream kinetic energy

being converted into thermal energy there. On the other hand, great diver-

gence in the static temperatures is noted in the downstream region beyond

the sphere-cone junction. This is due primarily to the shock shape which

takes on an angle close to the respective semi-cone angles ( _)c ). The

shock standoff distance normalized with respect to its own nose radius,

i.e., A / _w , also displays the effect of the semi-cone angle of the two

bodies considered. However, Tsh and A/_?, for the hemisphere -Z0 ° cone

were essentially the same as a function of _ for both Z80 and 310 kft.

The temperature profiles within the viscous shock layer are shown

in Figs. 36-38 for = ZO ° and = 9 °, respectively. In the stagnation

region, the maximum temperature is located immediately behind the shock,

while in the downstream region the peak temperature moves toward the

body surface, signifying the appearance of the viscous heating effect in a

layer near the body. In a region sufficiently far downstream, this layer is

thin compared to the shock-layer thickness, thus "recovering" a thin boundary

layer. Similar results were observed by Cheng (Ref. 15) and Davis (Ref. 70) in

their analyses of hyperboloidal bodies. Thus a continuous solution is obtained

which encompasses the "merged-layer" regime in the stagnation region through a

"vorticity-interaction" regime (Refs. 16, 18)to a "boundary-layer" regime in the

far downstream region of a blunted cone. Comparison of Figs. 36 and 37 with
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Fig. 38 indicates a significant difference in the magnitude of T/Tsh
for a given value of ff • This is primarily due to the difference in

for the two bodies as illustrated on Fig. 35.

"Sh

The heat-transfer characteristics for a sphere cone at high altitudes

are presented in Figure 39 in terms of the Stantonnumber(St) along the

body surface. The figure shows diminishing local heat-transfer rates in the
downstream direction, as in Refs. 2 and 15. In addition, the results

display the effect of the cone angle on the Stanton number such that the

decrease is greater for the (9c = 20 ° case than for the 0 c = 9 ° case. The

influence of altitude can also be seen by comparing the d9c = 20 ° results at

310,000 ft with those at 280,000 ft.

The distributions of the peak levels of the dissociated chemical species

along the body are shown in Figs. 40 and 41 for the _9c = Z0 ° cases. The rela-

tive mass fractions of N 2 and 0 2 are not shown. Similar results were
obtained for O_ = 9 ° but _re not included here. It is interesting to note from

Figs. 40 and41 that the present chemical nonequilibrium distributions for the

neutral species (and also the ionized species) display a minimum far down-

stream (on the order of ten nose radii) of the junction point and show a gradual

increase in their levels beyond this point. This type of behavior was observed

for the case of a thin boundary-layer flow over a blunted cone at low altitudes,

e.g., Refs. 71, 72. The present results for a viscous shock layer appear to

display similar bluntness effects on the flow. It is also important to note

the relative magnitudes of the atomic ions N+ and O + and the diatomic ion

NZ+ in the nose region. In addition, the 02 + ion is shown o n Fig. 41 to be

important in the downstream region for the 310 kft result's. These calculations

suggest that all of the air ions should be included in the chemical model.

The electron-density profiles calculated for a nonequilibrium, reacting

gas are shown in Figs. 42 and 43 for 0 e = 20 = cases at various downstream

locations. For the 280,000 ft calculation, the electron-density levels sharply

decrease in the downstream direction until at about ten nose radii a

minimum is reached due to expansion around the sphere-cone junction, and

thereafter the number density gradually increases as mentioned previously.

In the case of the 310,000 ft calculations, this minimum occurred at about

30 nose radii downstream. Similar results were also obtained for the

6)c = 9 ° case for both the nose region and the far downstream region but
are not included here.

5. 4 Estimated Plane-Wave Transmission Coefficients for an

Approximate Space-Shuttle Flow Field

In order to obtain some estimate of the potential communications

difficulties with the space-shuttle orbiter during earth entry, plane-wave

transmission coefficients were calculated for several axial locations along

the windward generator at several trajectory points. These calculations

are very approximate at the present time because an accurate flow-field

description for the orbiter is not available. However, by approximating
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the flow field, the electron-density and collision-frequency distributions

necessary for the E-M wave calculations were obtained, including non-

equilibrium chemical reactions. Only pure air chemistry was included in

these calculations and the chemical reactions and associated reaction rate

coefficients are given in Table I. The possible influence of ablation-product

ionization on the electron-density level was not included. This consideration

is particularly important at the lower altitudes where the electron density

from pure air ionization is decreasing.

In an effort to make maximum use of published work, the approximate

flow field obtained by Lordi, Vidal and Johnson (Ref. 68) for the windward plane

of symmetry of a blunted delta orbiter was used at altitudes of 250, 000 ft

and below. These authors located streamlines in the inviscid flow field and

determined the pressure distributions for these streamlines. They also

performed calculations of the nonequilibrium species distributions at several

altitudes of interest in this study for several of the streamlines. Because

flow-field calculations were required over a large altitude range, we have

used their calculations where available and performed additional nonequi-

librium calculations at other trajectory points of interest by utilizing the

streamline locations and pressure distributions supplied by Lordi and Vidal.

It is important to note that the only ion included in their calculations was

NO + . For their purposes, including NO + was appropriate but for the purposes

of estimating electron-density levels, future calculations should include
the remaining ions of air. Therefore, to be consistent, we used only the NO +

ion in our low-altitude streamtube calculations. However, as previously

noted, the additional ions of the air model, NZ +, O2+, N+, and O +, were

used in our high-altitude viscous-layer analysis.

The plane-wave transmission coefficients as a function of altitude are

shown in Fig. 44 to 48 for the windward generator at S/RI_ = 1.2Z, i0, 30,

50 and 90. Carrier frequencies of I00, 2200 and I0,000 kdl-lz have been con-

sidered in this study. For altitudes of 250,000 ft and below, the Z0 ° angle

of attack flow-field description of Lordi, et. al. was used to obtain the required

electron-density and collision-frequency distributions. Above 250,000 ft the

viscous flow-field analysis for a Z0 ° blunted cone described earlier in this

report was used. For the purposes of the E-M wave claculations, the gradi-

ent of electron density in the direction of propagation was accounted for by

assuming the plasma layer to be composed of many smaller homogeneous
slabs. However, the calculation technique (Ref. 73) is restricted in that it

requires that the gradients normal to the direction of electromagnetic propagation

be negligible.

A typical shuttle entry trajectory and the trajectory points for which

calculations were performed are given on Fig. 49. The calculations were

based on an early trajectory and do not correspond exactly to the updated

trajectory given on Fig. 49. However, for the preliminary nature of this

study, the correspondence is sufficiently close. It is significant to note that

for an operating frequency of ZZ00 IVIHz, the transmission from an antenna

located at X/R N of l. ZZ will probably be significantly attenuated for a
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period of approximately 15 minutes during the entry trajectory as a result
of pure air ionization.

The preliminary nature of the results described here must be empha-

sized. They are presented here only for the purpose of estimating the severity

of a potential problem. Before the selection of antenna frequencies and lo-

cations is made, it is recommended that a more detailed description of the

flow field should be obtained and that the potential influences of ablation product
ionization should be assessed.

As mentioned above, the results of the previously published flow field

work of Lordi, Vidal and Johnson for the windward plane of symmetry of a

blunted delta orbiter was used to obtain streamline locations and pressure

distributions, as well as electron-density distributions for some streamlines,

at altitudes below 250,000 ft. In order to provide a more complete report,

the electron-density distributions obtained from these calculations are given

in Figs. 50-53. The reader is cautioned that the only positive ion used in

these calculations was NO + and that ablation-product contamination at low

altitudes was not considered.

5.5 Conclusions

A theoretical analysis is presented which yields a continuous solution

for a nonequilibrium viscous shock-layer flow around a sphere cone at high

altitudes. Results are given for two different bodies (6) c = 9 ° and ZO °) in

terms of the temperature, the Stanton number and the electron-density distribu-

tions. These calculations show the effects of the bluntness, chemical non-

equilibrium and the semi-cone angle on the above quantities. The present

analysis was undertaken as a first step in the possible application of an

approximate technique to the calculation of a complicated flow field surrounding

the space shuttle.

Plane-wave transmission coefficients were calculated for several axial

locations along the windward generator of a 20 ° half-angle spherically blunted

cone and a blunted delta at Z0 ° angle of attack. These calculations considered

only pure air ionization. Transmission difficulties would probably be encountere_

from approximately 300 to Z00 kilofeet for frequencies less than ZZ00 MHz.

Ablation product ionization would tend to increase this altitude range. The

transmission-coefficient results presented here are very approximate. Before

the antenna frequencies and locations are selected for the shuttle vehicle, a

more detailed analysis should be performed.
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6. POST-RETRACTION ELECTROSTATIC-PROBE RESULTS

Voltage-swept thin-wire electrostatic probes were flown on the RAM C-III

vehicle as described in detail in Section Z. At an altitude of approximately

Z00,000 ft. the probes were retracted into the base-flow region but the voltage

sweeping was continued. It was therefore the purpose of this study to investigate

these post-retraction data and determine if useful electron-density and electron-

temperature results could be obtained.

The complex nature of the flow field in the base-flow region precluded

use of the ion-current portion of the probe characteristic for determining

the electron density. However, the electron-current portion of the characteristic

could possibly be used. As discussed in Section 4, the collected current in

this portion of the characteristic is independent of the ion mass and also inde-

pendent of the probe orientation relative to the mass motion of heavy particles.
Because of the relative insensitivity of electron collection to the magnitude

of the ion-ne.utral and neutral-neutral mean free paths, it is anticipated that

the electron temperature deduced from the electron-retarding region, where

the electron current is much larger than the ion current, should be correct.

The flight data were reviewed in some detail and it was determined

that those data in the altitude range of 190,000 to 180,000 ft were relatively

free of foreign materials which were injected into the flow field as part of

the flight-test program. Therefore, it was felt that the probe characteristics

obtained in this altitude range could be used to infer the electron temperature

and electron density in the base region. The technique used to obtain these

values from the probe characteristics has been previously described in

Sections Z and 4 and will not be repeated here.

Figures 54 and 55 illustrate the base region electron-density and electron-

temperature data for the RAM C-III flight for the altitude range 190,000 to

180,000 ft. One of the four thin-wire probes was not operating during the

post-retraction period so that results could only be obtained for three loca-

tions in the base region instead of four. The location of the probe relative

to the vehicle shoulder is illustrated on the figures. The electron density

at 7 to I0 ca. of the shoulder was on the order of 3 to 4 x I0 I0 e-/cm 3 but

fell off rapidly to approximately Z x 109 at 13 ca. It is difficult to compare

these flight results with predicted values because of the complexities involved

in determining the flow field in the near-wake region. However, one can

make comparisons with electron densities calculated for the shoulder prior

to ex ansion into the base region in order,to obtain an indication of whether

or n_Pt the results are reasonable. Huber _;_has calculated the peak electron

number density in the plasma layer prior to expansion to be approximately

Z x I0 II e-/cm 3 for the altitude range of interest. Qualitatively, the flight

data nearest the shoulder appear to be compatable with the calculated values.

':: These unpublished results were generously supplied to us by Mr. Paul Huber

of NASA, Langley Field.
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Figure 55 suggests that the electron temperature in the base region

was reasonably uniform between 8 and 13 ca. at a value of about 4000 to

5000 ° K. The peak heavy-particle translational temperature in the plasnna

layer at the shoulder prior to expansion calculated by Huber was approximately

4000 ° K. Once again, the flight data are qualitatively comparable with the

calculations suggesting that the electron temperature in the base region may

be nearly equal to the heavy-particle tern _erature just prior to the expansiono
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7. THREE-DIMENSIONAL, VISCOUS SHOCK LAYER FOR SPACE

SHUTTLE-TYPE BODY

Section 5 of this report described preliminary estimates of the high

altitude heat-transfer and electron-density distributions that were obtained

for the windward plane of symmetry by approximating the shuttle vehicle as

a blunted cone at zero angle of attack. These calculations were used to

estimate the electromagnetic-wave transmission coefficients at various vehicle

stations for a typical entry trajectory. The purpose of the work described

in this section was to formulate a method for obtaining solutions of the viscous

shock layer for a shuttle-type body at angle of attack so that the preliminary

results presented in Section 5 can be improved and so that calculations can

be performed for locations other than the windward generators.

The viscous hypersonic flow around a space shuttle vehicle at high

altitudes at angle of attack is described by the Navier-Stokes equations (Ref. 74)

and other continuum conservation equations (Ref. 75). The coordinate system

chosen is "body oriented", similar to the conventional boundary-layer co-

ordinate system (Ref. 18).

Based on experience with the axisymmetric viscous-flow analyses

(Refs. Z,Z0,41,69), the following assumptions are made:

i) a thin shock layer

Z) two-layer model of Cheng (Ref. 15)

3) Negligible changes in the flow properties such as the velocity

and total enthalpy due to the chemical reaction in the flow field

4) constant Prandtl and Schmidt numbers

5) binary diffusion due to concentration gradient only

6) negligible nonequilibrium effects due to electronic and vibrational

relaxation

7) ambipolar diffusion for the electrons and ions

These assumptions have been made in part or wholly in the previous analyses

and the rationale for these assumptions may be found,
for example, Refs. 15, 18, 19

BASIC EQUATIONS

With the above assumptions the governing equations for the three-

dimensional, viscous, ionized shock layer becon-e s (see Figure 1 Jbr a descrip-

tion of the flow field).

Continuity:

u.r)+ 4 (e
7 a (e r) - 0
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Streamwise Momentum:
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With the two-layer model of Cheng, these equations are applied to the

viscous shock layer allowing for the diffusion of the species into the shock-

transition zone by using the modified Rankine-Hugoniot conditions. The

boundary conditions for a fully catalytic solid wall are:

at y = O:

= 0

-'p = _p_c_, _)

C/. = 0

at y = /x(x, _) ;

br =0

(0_, N,)

: ,..,.

: (77)
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_ (all

so;

where

Transformation

made:

In solving the equations the following

oLz _

coordinate transformations are

In addition two stream functions are introduced such that

A1 ong with the nondimensional velocities U, _/ defined as

Lu _Y

U - U_ eos,,_ cos _ ; W - U_ co5/5 s,.nor.

we obtain _ _ W&
_? UG cos/S ") cos /_
_F _ 9F

With introduction of the above transformation, the equations become,

a series of manipulations:

after

Streamwise Momentum:

(_ cosz/56U _) + _o.,_ ¢z _ (_ cosZ 8 U_V)/

+_a
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Transver se Momentum:

_z5

C C05

_-_ Kz# cos _ IiFu + (.e ) -
1 _TF d_p_

4-

Normal Momentum:

_F - %=
Energy:

g

R, KzQ cos o_ ef

#-
KZ G H_ cos cz @F

_F ( _ Zrn)

sLn oLc_s o_ R_

_n jj

G U _ z _ U 2
005 /_ Co5

Rc

[io

Species:

where

.--?,Ix'. ; _- R. '> K = £,. t-j, ; #;b = H_
for a solid wall:

= cos/3 U& F

and,

At the conclusion of the present contract, the formulation has been

completed but results have not been obtained. However, possible methods of

solution have been investigated and some tentative conclusion regarding the

most promising approaches are presented.

_As methods of solution to the partial, non-linear differential equations,

the integral method (Refs. 2,Z0,Zi,69), the unsteady method (Refs. 76,77), the

explicit method (Refs. 78,79), and the implicit method (Refs. 70,80) were con-

sidered. From the viewpoint of quick but approximate results, the integral

method has been shown (Refs. Z, Z0,ZI,69) to be adequate, even in the three-

dimensional flow situation (Ref. 81). If, however, more accurate and

elaborate results are desired, the implicit scheme appears to be the

most reasonable method, being usually free from convergence problem

4O



even in the non-linear case. For the case of a three-dimensional imcompres-

sible, boundary-layer flow, initial success using the implicit scheme is

reported in Ref. 80 and 8 ?.• However, because the geometry of the space

shuttle is rather complicated, both the integral method and the implicit scheme

should be investigated before settling on one particular method.
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APPENDIX A

Admittance data taken during the experiments are presented relative
to a short circuit as are the values derived from the circular aperture :

theoretical model. In special cases, where the antenna is experimentally

matched to free space or partially matched using tuning stubs, calculations
must be adjusted accordingly _.

No adjustments are necessary for RAM G-III antenna singe the

circular aperture theoretical model values include the natural mismatch of
the aperture and plug. However, because the RAM C-II antenna admittance

for the no plasma case was different from its natural value, adjustments
were necessary. The equivalent circuit used to make the adjustments is
shown below.

TUNtNG TUNS NG ,4 P£RTURE

STUB STUB PL_8
#2 wJ

J- f.l ±"TI "r
I

Figure A- 1

The aperture admittance _/_ is transformed to a line length _,
to the first stub and the shunt susceptance, _s , added to the network. Both
_£ 1 and _5, have values such that the aperture admittance of the antenna

is matched to free space in the no plasma case. The admittance of the antenna

at the terminals of the first stub is given by the transmission line equation

_- + -t,.s

_._ The authors are grateful to Dr. John Q. Howell for formulating these
relationships and applying them to the unmatched antenna.
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A second stub is added at a distance _ from the first stub such
that the transformed admittance at the measurement reference plane is the

same value as measured in the experiment for the no plasma case.

The position of the reference plane is the null location for a shorted

aperture and is adjusted by selection of _.2 after the length _3 is deter-

mined, @£3 and _z were adjusted to give an admittance value of 1.38 +_ .18
at the reference plane for the no plasma case. Only minor deviations from this
value were observed during the course of the experiments as shown in Table II.
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Table T

CHEMICAL REACTIONS AND RATE COEFFICIENTS USED

IN NONEQUILIBRIUM CALCULATIONS

01

NO. REACTION

FORWARD DIRECTION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

O2+M ',-_ 20 + M

N2+M ---_ 2N + M

NO+M -'_ N+O+M

O+NO "_ N + O 2

O+N 2 .-_,- N + NO

N+N 2 .-_ N+ N+N

O + N "-_ NO + + e-

O+e- -e"-O++e +e

N+e- '-'_ N+ + e- + e-

O+0 "_ O2+ + e-

O + 02 + _ 0 2 + O+

N 2+N + "-_ N+N2 +

N+N -'_ N2++e -

O2+N 2 -'_ NO + NO+ + e-

NO+N 2-'_NO ++e-+N 2

O+NO +--_NO+O +

N2+O + --_O + N2 +

N+NO +'-_NO+N +

0 2 + NO+--_ NO + 02 +

O + NO + --_ 0 2 + N+

NO + 0 2 --_ NO + + e- ÷ 0 2

02+0 -,_- 20 + O

0 2 + 0 2 _ 20 + 0 2

O2+N 2 '-_ 20 + N 2

N2 + N2 _ 2N + N2

NO+M --_.- N + O + M

FORWARD RATE COEFF, kF

cm3/mole sec

3.6 x 1018 T -1"0 exp(-5.g5 x 104/T)

1.9 x 1017 T -0"5 exp(-1.13 x 105/T)

3.9 X 1020 T -1"5 exp(-7.56 x 104/T)

3.2 x 109 T 1 exp(-1.97 x I04/T)

7.0 x 1013 exp(-3.8 x 104/1")

4,085 x 1022 T -1"5 exp(-l.13 x 105/T)

(1.4 + 0.4) x 106 T 1"5 exp(-3.19 x 104/T)

(3.6 +_.1.2) x 1031 T -2"91 exp(-1.58 xl05/T)

(1.1 + 0.4) x 1032 T -3"14 exp(--l.69 x 105/T)

(1.6 + 0.4) x 1017 T "-0"98 exp(-8.08 x 104/T)

2.92 x 1018 T -1"11 exp(-2.8 x 104/T)

2.02 x 1011 T 0"81 exp(-l.3 x 104/T)

BACKWARD RATE COEFF, kB

cm3/mole sec OR cm6/mole 2 sec

3.0 x 1015 T -0"5

1.1 x 1016 T -0"5

1.0 x 1020 T -1"5

1.3 x 1010 T 1"0 exp(-3.58 x 103/'1")

1.56 x 1013

2.27 x 1021 T-1"5

(6.7 + 2.3) x 1021 T -1"5

(2.2 + 0.7) x 1040 T -4'5

(2.2 + 0.7) x 1040 T -4"5

(8.0 + 2.0) x 1021 T -1"5

7.8 x 1011 T 0"5

7.8 x 1011 T0'5

x 1022 T -1'5

T-2.5

(1.4 +_ 0.3) x 1013exp(-6.78 x 104/T) (1.5 + 0.5)

1.38 x 1020 T -1"84 exp(-1.41 x 105/T) 1.0 x 1024

2.2 x 1015 T -0"35 exp(-1.08 x 105/T) 2.2 x 1026 T -2"5

3.63 x 1015 T -0"6 exp(-5.08 x 104/T)

3.4 x 1019 T"2"0 exp(-2.3 x 104/'1")

1.0 x 101.9 T -0"93 exp(-6.1 x 104/r)

1.8 x 1015 T 0"17 exp(-3.3 x'104/T)

1,5 x 1013

2.48 x 1019 T -2"2

4.8 x 1014

1.8 x 1013 T0"5

1.34 x 1013 T 0"31 exp( -7.727 x 104rl ")

8.8 x 1015 T -0"35 exp(-1.08 x 105/T)

9.0 x 1019 T -1"0 exp(-5.°J5 x 104/3 ")

3.24 x 1019 T -1"0 exp(-5.95 x 104/T)

7.2 x 1018 T -1'0 exp(-5.95 x 104/1")

4.7 x 1017 T -0"5 exp(-1.13 x 105/T)

7.8 x 1020 T-1"5 exp(-7.55 x 104/'1")

1.0 x 1014

8,8 x 1026 T -2"5

7.5 x 1016 T -0"5

2.7 x 1016 T -0"5.

6.0 x 1015 T -0"5

2.72 x 1016 T-0"5

2.0 x 1020 T -1"5

THIRD BODY, M

N, NO

O, NO, O2

O2, N2

O, N, NO



O1
¢v3

Table Tr

SUMMARY OF EXPERIMENTAL RESULTS OBTAINED WITH RAM C-TIT S-BAND ANTENNA

AT 6.75 INCHES FROM PLATE LEADING EDGE IN CARBON MONOXIDE PLASMA

RUN PEAK n e OVER ne/ne)cR
#

ANTENNA

e-lcm 3

FOIL UNDER PLEXIGLAS

15 (6.3 TO 5.3) x" 1011

16 (7.6 TO 6.4) x 1011

*(5A TO 4.8) x 1011

17 t(4.0 TO 3.4) x 1011

(3.6 TO 3.0) x 1011

*(4.0 TO 3.4) x 1011

18 (82 TO 7.0) x 1011

19 (1.3 TO 1.2) x 1011

*(1.05 TO 1.0) x 1011

20 (9.0 TO 7.5) x 1010

4.2 + .3

5.0 + .4

3.6 + .3

2.6 + .2

2.4 + .2

2.6 + .2

5.4 + A5

0.9 + .15

0.74 + .12

0.6 + .1
i

ANTENNA IN FREE SPACE
BEFORE PLASMA

#1 #2 P3
ARC ARC ARC

1.872 1.08

0.716 1.14

0.728 1.164

0.734 1.1_

0.7_ 1.136

ANTENNAIN FREE
SPACE ROTATED &

0.342

1.30

1.32

1.306

1.284

1.314

1.310

CORRECTED FOR
#4 REFL. LINE LOSS

ARC ARC
Y

1.58 0.90

0.944 0.318 0.48 + j 0.02

0.952 0.325 0.47 - 0,001

0.956 0.31 0.49 + j 0.005

0.944 0.302 0.50 + j 0.025

0.958 0.320 0.48 + j 0.03

0.96 0.318 0.48 + j 0.03

Irl

0.35

0.36

0.342

0.33

0.35

0.35

#1
ARC

0.476

0.610

0.464

0.376

0.324

0.276

0.590

0.514

0.682

0.796

ANTENNA WITH PLASMA
OVER APERTURE

#2
ARC

1.472

1.570

1.476

1.404

1.304

1.396

1.520

1.040

0.878

1.020

#3 #4 REFL.
ARC ARC ARC

1.764 1.070 0.76

1.74 0.956 0.772

1.716 0.896 0.762

1.816 1.230 0.80

1.780 1.290 0.792

1.764 1.142 0.792

1.720 0.974 0.760

1.674 1.444 0.710

1.444 1.380 0.525

1.240 _1.056 0,249

ANTENNA WITH
PLASMA ROTATED&

CORRECTED FOR
LINE LOSS

y IPI

0.072 + j 0.05 0.862

0.077 - j 0.09 0.860

0.092 - j 0.038 0.830

0.060 + j 0.085 0.890

0.065 + j 0.147 0.880

0.063+ j 0.06 0.880

0.085 - j 0.075 0.845

0.14 + j 0.418 0.790

0.34 + j 0.49 0.582

0.625 + j 0.15 0.25

NOTE: 1) THE VOLTAGE REFLECTION COEFFICIENT, IFll, GIVEN HERE HAS BEEN CORRECTED FOR LINE LOSS. TO GET THE UNCORRECTED VALUE, MULTIPLY BY 0.90.

2} * INDICATES POST TEST-TIME DATA AND t INDICATES PRE TEST-TIME DATA.
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Table Trr

SUMMARY OF EXPERIMENTAL RESULTS OBTAINED WITH RAM C-I-I S-BAND ANTENNA

AT 11.25 INCHES FROM PLATE LEADING EDGE IN CARBON MONOXIDE PLASMA

RUN PEAK ne/ne)cR
# ELECTRON

DENSITY
OVER #1

ANTENNA
ARC

n 8

e'/cm 3

SHORT OVER ANTENNA APERTURE 1.280

1 (2.46 +_ .24) x 1011 1.76 + .17 0.95

2 (2.87 + .28) x 1011 2.05 + .20 0.96

3 (1.46 + .13) x 1011 1.04 + .09 0.964

4 (1.60 + .12) x 1011 1.14 + .09 0,976

* (1.13 + .09) x 1011 0.81 + .06 0.976

5 (1.60 + .12) x 1011 1.14 + .09 0.970

* (1.03 + .05) x 1011 0.73 + .03 0.970

6 (4.07 + .73) x 1010 0.29 + .05 0.976

7 (3.11 + .3) x 1010 0.22 + .02 0.944

8 (4.29 + .51) x 1010 0.31 + .03 0.944

9 (7.48 + .82) x 1010 10.53 + .06 0.944

* (6.62 + .72) x 1010 i0.47 + .05 0.944

10 (7.68 + .73) x 1010 0.55 + .05 0.916

11 (1.30 + .12) x 1011 0.93 + .08 0.966

ANTENNA IN FREE SPACE BEFORE
PLASMA ARRIVAL

#2 #3 #4

ARC ARC ARC

0.180 1.325 1.830

0.89 1.07 1.12

0.864 1.078 1.14

0.874 1.078 1,152

0.890 1.086 0.144

0.890 1.086 0,144

0.862 1.050 1.134

0.862 1.050 1.134

0.876 1.050 1,140

0.876 1.064 1.122

0.861 1.058 1.122

0.864 1.050 1.122

0.864 1.050 1.122

0.876 1.050 1.136

0.836 1.038 1.136

REFL.

ARC

0.843

0.148

0.148

0.140

0.131

0.131

0.130

0,130

0.122

0.140

0.145

0,143

0.143

0.142

. 0.141

ANTENNA IN FREE SPACE
ROTATED AND CORRECTED

FOR LINE LOSS

Y

1.35 + j 0.19 0.17

1.38 + j 0.18 0.18

1.39 + j 0.19 0.18

1.36 + j 0.18 0.165

1.36 + j 0.18 0,165

1.38 + j 0.12 0.165

1.38 + j 0.12 0.165

1.38 + j 0.10 0.165

1.33 + j 0.24 0.18

1.38 + j 0.18 0.175

1.36 + j 0,17 0.17

1.36 + j 0.17 0.17

1.38 x j 0.10 0.165

1.43 + j 0.10 0.182

ANTENNA WITH PLASMA
OVER APERTURE

#1 #2 #3 #4 REFL.

I_] ARC ARC ARC ARC ARC

ANTENNA WITH PLASMA
ROTATED AND

CORRECTED FOR LINE LOSS

Y' IPl

1.376 1.498 0.916 0.630 0.565 0.205 - j 0,246 0.68

1.522 1.396 0.670 0.842 0.630 0.22 - j 0.470 0.705

0.722 1.516 1.572 0.774 0.600 0.17 + j 0.450 0.760

1.136 1.620 1.200 0.434 0.58 0.175 + j 0.04 0.710

0.58 1.124 1.550 1.176 0.515 0.49+ j 0.97 0,617

1.196 1.550 1.170 0.476 0.5_ 0.21 - j 0.016 0.652

0.88 0.854 1.240 1.230 0.360 1.72 + j 0.85 0.39

0.976 0.876 1.050 1.140 0,122 1,38 + j 0.10 0.165

0.996 0.904 1.090 1.120 0.140 1.30+ j 0.13 0,145

0.944 0.861 1.058 1.122 0.145 1.38 + j 0.18 0.175

0.830 0.900 1.232 1.160 0,280 1.19 + j 0.70 0.315

0.856 0.762 1.110 1.240 0,305 1.70 + j 0.65 0.341

0.856 0.840 1.312 1.296 0.415 1,51 + j 0,95 0.40

0.57 1.336 1.562 0.952 0.560 0.26 + j 0.67 0.70

NOTE: 1) THE VOLTAGE REFLECTION COEFFICIENT, _ I, GIVEN HERE HAS BEEN CORRECTED FOR LINE LOSS TO GET THE UNCORRECTED VALUE, MULTIPLY BY 0.835.

2) ANTENNA FREQUENCY WAS 3348 MHz AND THEREFORE ne)cR --_'_1.4 1011 e°/cm 3

3) * INDICATES POSTTEST-TIME DATA



Table [IZ

RESULTS OBTAINED FROM LANGMUIR PROBE CURRENT-VOLTAGE CHARACTERISTICS

¢j1
¢j1

TEST
GAS

CO

CO

CO

CO

CO

CO

CO

CO

CO

CO

CO

CO

CO

CO

CO

CO

CO

CO

CO

CO

CO

CO

CO

CO

N 2

N 2

N 2

N 2

PROBE LOCATION

FREE STREAM

BOUNDARY LAYER

i
I

FREE STREAM

Ir

/_-WAVE NUMBER
DENSITY AT 22.5 in.

e-/cm 3

2.0 x 1011

1.5 x 1011

2.0 x 1011

9.5x 109

1.0 x 1010

1.5 x 1010

7.2 x 109

NUMBER DENSITY FROM T NUMBER DENSITY FROM

ION SATURATION Rp/_ D e ELECTRON SATURATION Rp/_D
e'/cm 3 - o K e-/cm 3 -

1.5 x 1011 7.5 2110 1.3 x 1011 6.9

1.7 x 1011 8.8 1650 1.7 x 1011 8.7

1.2 x 1011 7.0 1945 1.4 x 1011 7.4

1.4 x 1010 1.7 2500 1.3 x 1010 1.7

1.3 x 1010 1.9 2090 1.3 x 1010 1.8

1.7 x 1010 2.0 2320 1.4 x 1010 1.4

4.4 x 1010 3.3 2300 3.3 x 1010 2.8

1.6 x 1010 1.9 2510 1.4 x 1010 1.8

6.6 x 1010 4.3 2000 5.3 x 1010 3.8

1.1 x 1010 1.6 2170 1.1 x 1010 1.7

5.3 x 1010 3.5 2310 5.0 x 1010 3.4

1.8 x 1010 2.3 1810 1.8 x 1010 2.3

6.2 x 1010 4.4 1730 6.5 x 1010 3.6

2.1 x 1010 2.3 2100 2.1 x 1010 2.3

4.1 x 1010 3.4 1950 4.1 x 1010 3.4

8.1 x 109 1.5 1955 8.9 x 109 1.6

5.0 x 1010 3.9 1960 4.6 x 1010 3.6

2.5 x 1010 2.5 2130 2.6 x 1010 2.5

9.4 x 109 1.6 2020 9.2 x 109 1.6

2.7 x 1010 2.7 2060 2.9 x 1010 2.8

1.2 x 1010 1.7 2160 1.3 x 1010 1.8

2.8 x 1010 2.8 1980 3.8 x 1010 3.2

6.8 x 109 1.3 2160 6.5 x 109 1.3

4.3 x 1010 3.5 1915 4.3 x 1010 1.4

9.0 x 109 1.4 3580 1.1 x 1010 1.5

1.1 x 1010 1.5 3670 1.1 x 1010 1.5

1A x 1010 1.7 3510 1.1 x 1010 1.5

7.4 x 109 1.5 2450 3.5 x 109 2.1

I

(V_Vf)theo" (Vo_Vf)exp.
volts volts

0.9 0.8

0.7 0.9

0.85 0.8

=- 1.2 1.2

0.9 1.1

1.0 1.1

1.0 1.2

1.1 " 0.9

0.9 0.9

0.95

1.0

0.8

0.76

0.92

0.85

0.86

0.86

0.93

0.88

0.90

0.93

0.87

0.95

0.84

1.6

1.6

1.53

1.06

0.9

1.2

0.8

O.8

1.0

O.9

0.8

0.9

1.1

0.8

1.0

0.9

1.0

1.1

1.0

2.0

1.6

1.5

0.7



u=

JUNCTION

RC

SHOCK

BASE

CENTERLINE

Figure 1 SCHEMATIC FLOW FIELD
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Figure 2 RAM C-]] PAYLOAD

CON F I GU RATION

EXTERNAL
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0.005(0.0127) -_//_- 0..010 (0.0254)
radius

BERYLLIUM OXIDE
INSULATOR

L EADI NG-E DG E PH ENOL IC
DETAI L FIBERGLASS

HOLDER

45 °

IRIDIUM
ELECTRON
COLLECTOR

ION
COLLECTOR

STANDOFF DISTANCE, y
(in.) (cm)

0.378 (0.96)

0.716 (1.84)

1.062 (2.70)

1.408 (3.58)

1.754 (4.46)

2.102 (5.34)

2.438 (6.20)

2.790 (7.08)

Figure 3 RAM C-IT CONSTANT BIAS-
VOLTAGE ELECTROSTATIC
PROBE RAKE
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Figure 4 RAM C-]_ PAYLOAD EXTERNAL

CON F ! G U R AT! ON
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0.005 (0.0127) radius

0.010 (0,0254)

• '[

LEADING-EDGE
DETAIL

BERYLLIUM OXIDE
INSULATOR

PH ENOLIC
FIBERGLASS
HOLDER

IRIDIUM ELECTRON/_ i_
COLLECTOR

ION STANDOFF DISTANCE, y
COLLECTOR (in.) (cm)

1

2

• 3

4

5

6

7

8

9

10

11

12

13

14

15

16

0.35 0.88

0.69 1.75

1.04 2.63 •

1.38 3.51

1.72 4.38

2.07 5.26

2.42 6.14

2.76 7.01

3.10 7,89

3.45 8.77

3,80 9.64

4.1-4 10.52

4.48 11.39

4.83 12.27

5.18 13.15

5.52 14.02

\

Figure 5 RAM C-m CONSTANT BIAS-

VOLTAGE ELECTROSTATIC
PROBE RAKE
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--0.005 (0.0127) diameter

0.400 (i.016) length
6)

LEADING-EDGE

DETAIL

BERYLLIUM
OXIDE
INSU LATOR

PHENOLIC
FIBERGLASS
HOLDER

PAYLOAD
SURFACE

IRIDIUM REFERENCE
ELECTRODE

ELECTRON STANDOFF DISTANCE, y
COLLECTOR (in.) (cm)

0.59 1.5

1.38 3.5

2.56 6.5

3.74 9.5

Figure 6 RAM C-TIT SWEPT-VOLTAGE
ELECTROSTATIC PROBE RAKE
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1012

NON--EQUILIBRIUM FLOW,

VISCOUS--SHOCK LAYER THEORY

KEY TO FLIGHT DATA

RAM C--1T[ CONSTANT BIAS--

VOLTAGE PROBE

I RAM.C--Tr CONSTANT BIAS--VOLTAGE PROBE

RAM C--TR SWEPT--VOLTAGE

PROBE

A 265,000 ft

O 250,000 ft SHOCK

¢q 0 233.000 ft SHOCI< J ALT

E 1011 ___233.-_00ft'_ J

T_ _.___J 250,000 ft

1010 /_ I l " J 265.000 ft

,,=, _ __ s OCK

_ I ± 275,000 't

1081 J I I I I I L =
0 2 4 6 8 10 12 14 16 18

DISTANCE NORMAL TO BODY, cm

Figure 7 COMPARISON BETWEEN CAL-

CULATED ELECTRON DENSITY

AND IN-FLIGHT ELECTROSTATIC

PROBE MEASUREMENTS

62



104

<C
UJ

IJJ
I--

103
280

T ELECTRON TEMPERATURE RAM C--'J]TSWEPT

VOLTAGE PROBE AT 1.5 TO 9,5 cm FROM BODY

CALCULATED HEAVY--PARTICLE TRANSLATIONAL
TEMPERATURE BETWEEN 1.5 AND 9.5 cm FROM BODY

I I I I I i I I I I I I I I

270 260 250 240 230 220 210

ALTITUDE, kilofeet

Figure 8 COMPARISON BETWEEN CALCULATED
HEAVY-PARTICLE TRANSLATIONAL

TEMPERATURE AND IN-FLIGHT

MEASURED ELECTRON TEMPERATURE
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O3
E

I

¢/3
z
LU
C3

LU
rn

Z

Z
0

I--

u.I
..I
I.IJ

KEY TO VISCOUS SHOCK--LAYER THEORY

UPPER-BOUND REACTION RATE COEFFICIENTS
FOR DE--IONIZATION REACTIONS

LOWER--BOUND REACTION RATE COEFFICIENTS
FOR DE-IONIZATION REACTIONS

KEY TO FLIGHT DATA

1012 _ RAM C-TIT CONSTANT BIAS--VOLTAGE PROBE

I I RAM C-IT CONSTANT BIAS--VOLTAGE PROBE

0 RAM C--TIT SWEPT--VOLTAGE PROBE AT i
233,000 ft ALTITUDE /_

-i

1011- T_T ] 1__-_-_. _ (SHOCK)

3,000 ft

(SHOCK)

1010 _...__ "

109 -"" --- --- 275,000 ft

10 8 I I I I I I I i I
0 2 ,4 6 8 10 12 14 16 18

DISTANCE NORMAL TO BODY, cm

Figure 9 INFLUENCE OF REACTION RATE

COEFFICIENTS ON CALCULATED

ELECTRON DENSITY AT ELECTRO-

STATIC PROBE LOCATION
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(SHOCK)

1011

233,000 ft

03
E

I

_. 1010
>.
p-
¢/3
Z
uJ
C3

uJ
_3
_E 109

z
z
0

W
.J

uJ 108

107
0

Figure 10

(SHOCK)

5,000 ft

f (SHOCK)

/
/

/
/ 275,000 ft

f
/

f

s KEY TO CALCULATIONS

+ + O+MODEL INCLUDED NO + , N2 , 0 2 , N+, AND IONS
---- MODEL INCLUDED NO + ION ONLY

i I I I I I I I I

2 4 6 8 10 12 14 16 18

DISTANCE NORMAL TO BODY, cm

INFLUENCE OF CHEMICAL MODEL

ON CALCULATED ELECTRON

DENSITY AT ELECTROSTATIC

PROBE LOCATION
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NOTE: RESULTSARE FOR UPPER--BOUND
REACTION RATE COEFFICIENTS
FOR DE--IONIZATION REACTIONS

PROBE

2 + SHOCK U==

10- FO ._-_ ,,_

m" 10 -3 JUNCTION

lO-4 _ No+_..-.. SHOCK

== --_
*:"- _ 10 -5 /_- 0"_ J O_
u- E
0 E
Z = -6
O'>.-10

<

u,.

<

10 -7

10 -8

10-9 i
0 2

o+ q
N_

N+.-_ 10-10

J i I l I I l I ]

4 6 8 10 12 14 16 18

DISTANCE NORMAL TO BODY, y, (cm)

Figure 11 NONEQUILIBRIUM SPECIES DIS-

TRIBUTIONS IN PLASMA LAYER

FOR 233,000 ft ALTITUDE AT

25,000 ft/sec VELOCITY

Z
O
I--

O

LU
r_
O
tr
a.
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NOTE: RESULTS ARE FOR UPPER--BOUND
REACTION RATE COEFFICIENTS
FOR DE--IONIZATION REACTIONS

10-3

uJuJ 10_4

lO.5

_) _E_.10- 6

(.1
<I: "-"
m 10 -7
U.

10_8
=E

10-9
0

O+ _-i

N2 +

N+~ 10_11.1
i J i I [ ½ I

2 4 6 8 10 12 14 16

DISTANCE NORMAL TO BODY, y, (cm)

I

18

Figure 12 NONEQUILIBRIUM SPECIES DIS-

"I'RIBUTIONS IN PLASMA LAYER

FOR 275,000 ft ALTITUDE AT

25,000 ft/sec VELOCITY
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NON-EQUILIBRIUM FLOW,
VISCOUS SHOCK--LAYER THEORY

KEY TO FLIGHT DATA

RAM C--TR CONSTANT BIAS--VOLTAGE
PROBE

RAM C--T[ CONSTANT BIAS--VOLTAGE
PROBE

pp.." 1012 _

03
Z
U.I
C3

oq
E

UJ ¢j
rn

Z

Z
0

I-

uJ
,..J
uJ

o RAM C--TIT SWEPT--VOLTAGE PROBE

SHOCK

_1011

1010
0

i I I I I I I I i

2 4 6 8 10 12 14 16 18

DISTANCE NORMAL TO BODY, cm

Figure 13 COMPARISON BETWEEN CAL-

CULATED ELECTRON DENSITY

AND IN--FLIGHT ELECTROSTATIC

PROBE MEASUREMENTS AT

214,000 ft ALTITUDE
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1012

THEORETICAL

PROFILE

FLIGHT DATA

03
E
¢J

,-...

>:
I--

U3
Z
u.I
a
n"
LU

=E

Z

z
0

I--

LM
..J
LU

1011

1010

233,000 ft
250,000 ft

265,000 ft

275,000 ft

109
0

BODY

Figure 14

(__X/R N = 5.2

0.2 0.4 0.6 0.8

DISTANCE NORMAL TO BODY/SHOCK-
LAYER THICKNESS, y/_

COMPARISON OF PREDICTED

ELECTRON DENSITY PROFILE

WITH PEAK VALUE FROM

REFLECTOMETER FLIGHT

DATA AT X/R,_, = 5.2
i_1

1.0
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I r.Eo._r,cA. )1
P.OF,.E 233.000,t/!
FL,O.TOATAJA

1011

1010

,,=,

7=

10 9

1 SHOCK

10 8 I I I I I I I I I I
0 0.2 0.4 0.6 0.8 1.0

BODY DISTANCE NORMAL TO BODY/SHOCK-

LAYER THICKNESS, y/A

Figure 15 COMPARISON OF PREDICTED

ELECTRON-DENSITY PROFILE

WITH PEAK VALUE FROM

RE FLECIOMETER FLIGHT

DATA AT X/R N = 7.65
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PLEXIGLAS LAYER

:LON PLUG

BONDING

AGENT

_O °O

FEED
POSITION

. Figure 16 SKETCH OF THE RAM C-TIT S-BAND

ANTENNA
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= 0.2 in

= 0.4 in

_= 0.6 in

= 1.2 in

2.4 in

0
0

Figure 17

I I
1.0 2.0

y, inches

ASSUMED ELECTRON-DENSITY
PROFILES FOR PRE-EXPERIMENT
CALCULATIONS
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NAM[ TITLE DWG. NO._UiTH CHART F_U a2_ _Z-41) K AY ELECTRIC COMPANY pINE aROOK, NJ. _1141 PRINTED IN _A

IMPEDANCE OR ADMITTANCE COORDINATES

DISTANCE FROM SURFACE

• TO PEAK ne

0.2 inches

0.4 inches

0.6 inches

1.2 inches

2.4 inches

Figure 18 INFLUENCE OF BOUNDARY LAYER

ELECTRON - DENSITY PROFILE ON

CALCULATED ADM ITTANCE
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Figure 19(a)RAM C-TIT AND RAM C-T[ S-BAND
AND X-BAND ANTENNAS MOUNTED

IN FLAT PLATE
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Figure 19(b)RAM C-TIT AND RAM C-TI ANTENNAS
IN FLAT-PLATE MODEL
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RECORDS FOR RAM C-TII S-BAND ANTENNA IN CARBON MONOXIDE PLASMA
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Figure 51 ELECiTRON NUMBER-DENSITY_

DISTRIBUTION IN SHOCK-LAYER

FOR BLUNTED DELTA AT oc = 20 °
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Figure 53 ELECTRON NUMBER-DENSITY

DISTRIBUTION IN SHOCK-LAYER

FOR BLUNTED DELTA AToC= 20 °
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SWEPT--VOLTAGE PROBE CHARACTERISTIC
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